jadechoghari
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,104 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
---
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## How to Use the *ferret-gemma* Model
|
8 |
+
|
9 |
+
Please download and save `builder.py`, `conversation.py` locally.
|
10 |
+
|
11 |
+
### Basic Text Generation
|
12 |
+
```python
|
13 |
+
import torch
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
+
|
16 |
+
# load the model and tokenizer
|
17 |
+
model_name = "jadechoghari/ferret-gemma"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
20 |
+
|
21 |
+
# give input text
|
22 |
+
input_text = "The United States of America is a country situated on earth"
|
23 |
+
|
24 |
+
# tokenize the input text
|
25 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
output = model.generate(inputs['input_ids'], max_length=50, num_return_sequences=1)
|
30 |
+
|
31 |
+
# decode and print the output
|
32 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
+
print(generated_text)
|
34 |
+
```
|
35 |
+
|
36 |
+
### Image and Text Generation
|
37 |
+
```python
|
38 |
+
import torch
|
39 |
+
from PIL import Image
|
40 |
+
from conversation import conv_templates
|
41 |
+
from builder import load_pretrained_model # custom model loader
|
42 |
+
|
43 |
+
# load model and tokenizer, then preprocess an image
|
44 |
+
def infer_single_prompt(image_path, prompt, model_path):
|
45 |
+
img = Image.open(image_path).convert('RGB')
|
46 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "ferret_gemma")
|
47 |
+
image_tensor = image_processor.preprocess(img, return_tensors='pt', size=(336, 336))['pixel_values'][0].unsqueeze(0).half()
|
48 |
+
|
49 |
+
# prepare prompt
|
50 |
+
conv = conv_templates["ferret_gemma_instruct"].copy()
|
51 |
+
conv.append_message(conv.roles[0], f"Image and prompt: {prompt}")
|
52 |
+
input_ids = tokenizer(conv.get_prompt(), return_tensors='pt')['input_ids'].cuda()
|
53 |
+
|
54 |
+
image_tensor = image_tensor.cuda()
|
55 |
+
|
56 |
+
# generate text output
|
57 |
+
with torch.inference_mode():
|
58 |
+
output_ids = model.generate(input_ids, images=image_tensor, max_new_tokens=1024)
|
59 |
+
|
60 |
+
# decode the output
|
61 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
62 |
+
return output_text.strip()
|
63 |
+
|
64 |
+
# Usage
|
65 |
+
result = infer_single_prompt("image.jpg", "Describe the contents of the image.", "jadechoghari/ferret-gemma")
|
66 |
+
print(result)
|
67 |
+
```
|
68 |
+
|
69 |
+
### Text, Image, and Bounding Box
|
70 |
+
```python
|
71 |
+
import torch
|
72 |
+
from PIL import Image
|
73 |
+
from functools import partial
|
74 |
+
from builder import load_pretrained_model
|
75 |
+
|
76 |
+
# generates a bounding box mask
|
77 |
+
def generate_mask_for_feature(coor, img_w, img_h):
|
78 |
+
coor_mask = torch.zeros((img_w, img_h))
|
79 |
+
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
|
80 |
+
return coor_mask
|
81 |
+
|
82 |
+
def infer_with_bounding_box(image_path, prompt, model_path, region):
|
83 |
+
img = Image.open(image_path).convert('RGB')
|
84 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "ferret_gemma")
|
85 |
+
image_tensor = image_processor.preprocess(img, return_tensors='pt', size=(336, 336))['pixel_values'][0].unsqueeze(0).half().cuda()
|
86 |
+
|
87 |
+
input_ids = tokenizer(f"Image and prompt: {prompt}", return_tensors='pt')['input_ids'].cuda()
|
88 |
+
|
89 |
+
# create region mask
|
90 |
+
mask = generate_mask_for_feature(region, *img.size).unsqueeze(0).half().cuda()
|
91 |
+
|
92 |
+
# generate output with region mask
|
93 |
+
with torch.inference_mode():
|
94 |
+
model.orig_forward = model.forward
|
95 |
+
model.forward = partial(model.orig_forward, region_masks=[[mask]])
|
96 |
+
output_ids = model.generate(input_ids, images=image_tensor, max_new_tokens=1024)
|
97 |
+
|
98 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
99 |
+
return output_text.strip()
|
100 |
+
|
101 |
+
# Usage
|
102 |
+
result = infer_with_bounding_box("image.jpg", "Describe the contents of the box.", "jadechoghari/ferret-gemma", (50, 50, 200, 200))
|
103 |
+
print(result)
|
104 |
+
```
|