VidToMe / invert.py
jadechoghari's picture
Update invert.py
03aa894 verified
import torch.nn as nn
import torch
from tqdm import tqdm
import os
from transformers import logging
from .config_utils import load_config, save_config
from .utils import get_controlnet_kwargs, get_latents_dir, init_model, seed_everything
from .utils import load_video, prepare_depth, save_frames, control_preprocess
# suppress partial model loading warning
logging.set_verbosity_error()
class Inverter(nn.Module):
def __init__(self, pipe, scheduler, config):
super().__init__()
self.device = config.device
self.use_depth = config.sd_version == "depth"
self.model_key = config.model_key
self.config = config
inv_config = config.inversion
float_precision = inv_config.float_precision if "float_precision" in inv_config else config.float_precision
if float_precision == "fp16":
self.dtype = torch.float16
print("[INFO] float precision fp16. Use torch.float16.")
else:
self.dtype = torch.float32
print("[INFO] float precision fp32. Use torch.float32.")
self.pipe = pipe
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.unet = pipe.unet
self.text_encoder = pipe.text_encoder
if config.enable_xformers_memory_efficient_attention:
try:
pipe.enable_xformers_memory_efficient_attention()
except ModuleNotFoundError:
print("[WARNING] xformers not found. Disable xformers attention.")
self.control = inv_config.control
if self.control != "none":
self.controlnet = pipe.controlnet
self.controlnet_scale = inv_config.control_scale
scheduler.set_timesteps(inv_config.save_steps)
self.timesteps_to_save = scheduler.timesteps
scheduler.set_timesteps(inv_config.steps)
self.scheduler = scheduler
self.prompt=inv_config.prompt
self.recon=inv_config.recon
self.save_latents=inv_config.save_intermediate
self.use_blip=inv_config.use_blip
self.steps=inv_config.steps
self.batch_size = inv_config.batch_size
self.force = inv_config.force
self.n_frames = inv_config.n_frames
self.frame_height, self.frame_width = config.height, config.width
self.work_dir = config.work_dir
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt=None, device="cuda"):
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
if negative_prompt is not None:
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def decode_latents(self, latents):
with torch.autocast(device_type=self.device, dtype=self.dtype):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def decode_latents_batch(self, latents):
imgs = []
batch_latents = latents.split(self.batch_size, dim = 0)
for latent in batch_latents:
imgs += [self.decode_latents(latent)]
imgs = torch.cat(imgs)
return imgs
@torch.no_grad()
def encode_imgs(self, imgs):
with torch.autocast(device_type=self.device, dtype=self.dtype):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.mean * 0.18215
return latents
@torch.no_grad()
def encode_imgs_batch(self, imgs):
latents = []
batch_imgs = imgs.split(self.batch_size, dim = 0)
for img in batch_imgs:
latents += [self.encode_imgs(img)]
latents = torch.cat(latents)
return latents
@torch.no_grad()
def ddim_inversion(self, x, conds, save_path):
print("[INFO] start DDIM Inversion!")
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type=self.device, dtype=self.dtype):
for i, t in enumerate(tqdm(timesteps)):
noises = []
x_index = torch.arange(len(x))
batches = x_index.split(self.batch_size, dim = 0)
for batch in batches:
noise = self.pred_noise(
x[batch], conds[batch], timesteps[i], batch_idx=batch)
noises += [noise]
noises = torch.cat(noises)
x = self.pred_next_x(x, noises, t, i, inversion=True)
if self.save_latents and t in self.timesteps_to_save:
torch.save(x, os.path.join(
save_path, f'noisy_latents_{t}.pt'))
# Save inverted noise latents
pth = os.path.join(save_path, f'noisy_latents_{t}.pt')
torch.save(x, pth)
print(f"[INFO] inverted latent saved to: {pth}")
return x
@torch.no_grad()
def ddim_sample(self, x, conds):
print("[INFO] reconstructing frames...")
timesteps = self.scheduler.timesteps
with torch.autocast(device_type=self.device, dtype=self.dtype):
for i, t in enumerate(tqdm(timesteps)):
noises = []
x_index = torch.arange(len(x))
batches = x_index.split(self.batch_size, dim = 0)
for batch in batches:
noise = self.pred_noise(
x[batch], conds[batch], t, batch_idx=batch)
noises += [noise]
noises = torch.cat(noises)
x = self.pred_next_x(x, noises, t, i, inversion=False)
return x
@torch.no_grad()
def pred_noise(self, x, cond, t, batch_idx=None):
# For sd-depth model
if self.use_depth:
depth = self.depths
if batch_idx is not None:
depth = depth[batch_idx]
x = torch.cat([x, depth.to(x)], dim=1)
kwargs = dict()
# Compute controlnet outputs
if self.control != "none":
if batch_idx is None:
controlnet_cond = self.controlnet_images
else:
controlnet_cond = self.controlnet_images[batch_idx]
controlnet_kwargs = get_controlnet_kwargs(self.controlnet, x, cond, t, controlnet_cond, self.controlnet_scale)
kwargs.update(controlnet_kwargs)
eps = self.unet(x, t, encoder_hidden_states=cond, **kwargs).sample
return eps
@torch.no_grad()
def pred_next_x(self, x, eps, t, i, inversion=False):
if inversion:
timesteps = reversed(self.scheduler.timesteps)
else:
timesteps = self.scheduler.timesteps
alpha_prod_t = self.scheduler.alphas_cumprod[t]
if inversion:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
else:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
if inversion:
pred_x0 = (x - sigma_prev * eps) / mu_prev
x = mu * pred_x0 + sigma * eps
else:
pred_x0 = (x - sigma * eps) / mu
x = mu_prev * pred_x0 + sigma_prev * eps
return x
@torch.no_grad()
def prepare_cond(self, prompts, n_frames):
if isinstance(prompts, str):
prompts = [prompts] * n_frames
cond = self.get_text_embeds(prompts[0])
conds = torch.cat([cond] * n_frames)
elif isinstance(prompts, list):
cond_ls = []
for prompt in prompts:
cond = self.get_text_embeds(prompt)
cond_ls += [cond]
conds = torch.cat(cond_ls)
return conds, prompts
def check_latent_exists(self, save_path):
save_timesteps = [self.scheduler.timesteps[0]]
if self.save_latents:
save_timesteps += self.timesteps_to_save
for ts in save_timesteps:
latent_path = os.path.join(
save_path, f'noisy_latents_{ts}.pt')
if not os.path.exists(latent_path):
return False
return True
@torch.no_grad()
def __call__(self, data_path, save_path):
self.scheduler.set_timesteps(self.steps)
save_path = get_latents_dir(save_path, self.model_key)
os.makedirs(save_path, exist_ok = True)
if self.check_latent_exists(save_path) and not self.force:
print(f"[INFO] inverted latents exist at: {save_path}. Skip inversion! Set 'inversion.force: True' to invert again.")
return
frames = load_video(data_path, self.frame_height, self.frame_width, device = self.device)
frame_ids = list(range(len(frames)))
if self.n_frames is not None:
frame_ids = frame_ids[:self.n_frames]
frames = frames[frame_ids]
if self.use_depth:
self.depths = prepare_depth(self.pipe, frames, frame_ids, self.work_dir)
conds, prompts = self.prepare_cond(self.prompt, len(frames))
with open(os.path.join(save_path, 'inversion_prompts.txt'), 'w') as f:
f.write('\n'.join(prompts))
if self.control != "none":
images = control_preprocess(
frames, self.control)
self.controlnet_images = images.to(self.device)
latents = self.encode_imgs_batch(frames)
torch.cuda.empty_cache()
print(f"[INFO] clean latents shape: {latents.shape}")
inverted_x = self.ddim_inversion(latents, conds, save_path)
save_config(self.config, save_path, inv = True)
if self.recon:
latent_reconstruction = self.ddim_sample(inverted_x, conds)
torch.cuda.empty_cache()
recon_frames = self.decode_latents_batch(
latent_reconstruction)
recon_save_path = os.path.join(save_path, 'recon_frames')
save_frames(recon_frames, recon_save_path, frame_ids = frame_ids)
if __name__ == "__main__":
config = load_config()
pipe, scheduler, model_key = init_model(
config.device, config.sd_version, config.model_key, config.inversion.control, config.float_precision)
config.model_key = model_key
seed_everything(config.seed)
inversion = Inverter(pipe, scheduler, config)
inversion(config.input_path, config.inversion.save_path)