Commit
·
c961996
1
Parent(s):
7b6887d
Upload 10 files
Browse files- code/LyricsCommentData.py +16 -0
- code/attention_modules.py +267 -0
- code/data.py +297 -0
- code/eval.py +87 -0
- code/model.py +56 -0
- code/model_fusion.py +69 -0
- code/modeling_bart.py +1483 -0
- code/music_encoder.py +196 -0
- code/train.py +145 -0
- code/train_fusion.py +193 -0
code/LyricsCommentData.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class LyricsCommentData(object):
|
7 |
+
music4all_id: str
|
8 |
+
songmeanings_id: str
|
9 |
+
lyrics: str
|
10 |
+
comment: str
|
11 |
+
|
12 |
+
def get_audio_path(self): # get audio path from id
|
13 |
+
self.audio_path = os.path.join("Music4All/music4all/audios",
|
14 |
+
self.music4all_id + '.mp3'
|
15 |
+
)
|
16 |
+
return self.audio_path
|
code/attention_modules.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
# Code adopted from https://github.com/huggingface/pytorch-pretrained-BERT
|
3 |
+
|
4 |
+
import math
|
5 |
+
import copy
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
# Gelu
|
12 |
+
def gelu(x):
|
13 |
+
"""Implementation of the gelu activation function.
|
14 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
15 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
16 |
+
Also see https://arxiv.org/abs/1606.08415
|
17 |
+
"""
|
18 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
19 |
+
|
20 |
+
|
21 |
+
# LayerNorm
|
22 |
+
try:
|
23 |
+
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
|
24 |
+
except ImportError:
|
25 |
+
# print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
|
26 |
+
class BertLayerNorm(nn.Module):
|
27 |
+
def __init__(self, hidden_size, eps=1e-12):
|
28 |
+
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
29 |
+
"""
|
30 |
+
super(BertLayerNorm, self).__init__()
|
31 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
32 |
+
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
33 |
+
self.variance_epsilon = eps
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
u = x.mean(-1, keepdim=True)
|
37 |
+
s = (x - u).pow(2).mean(-1, keepdim=True)
|
38 |
+
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
39 |
+
return self.weight * x + self.bias
|
40 |
+
|
41 |
+
|
42 |
+
class BertConfig(object):
|
43 |
+
def __init__(self,
|
44 |
+
vocab_size,
|
45 |
+
hidden_size=768,
|
46 |
+
num_hidden_layers=12,
|
47 |
+
num_attention_heads=12,
|
48 |
+
intermediate_size=3072,
|
49 |
+
hidden_act="gelu",
|
50 |
+
hidden_dropout_prob=0.1,
|
51 |
+
max_position_embeddings=512,
|
52 |
+
attention_probs_dropout_prob=0.1,
|
53 |
+
type_vocab_size=2):
|
54 |
+
self.vocab_size = vocab_size
|
55 |
+
self.hidden_size = hidden_size
|
56 |
+
self.num_hidden_layers = num_hidden_layers
|
57 |
+
self.num_attention_heads = num_attention_heads
|
58 |
+
self.hidden_act = hidden_act
|
59 |
+
self.intermediate_size = intermediate_size
|
60 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
61 |
+
self.max_position_embeddings = max_position_embeddings
|
62 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
63 |
+
self.type_vocab_size = type_vocab_size
|
64 |
+
|
65 |
+
|
66 |
+
class BertSelfAttention(nn.Module):
|
67 |
+
def __init__(self, config):
|
68 |
+
super(BertSelfAttention, self).__init__()
|
69 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
70 |
+
raise ValueError(
|
71 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
72 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
73 |
+
self.num_attention_heads = config.num_attention_heads
|
74 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
75 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
76 |
+
|
77 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
78 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
79 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
80 |
+
|
81 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
82 |
+
|
83 |
+
def transpose_for_scores(self, x):
|
84 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
85 |
+
x = x.view(*new_x_shape)
|
86 |
+
return x.permute(0, 2, 1, 3)
|
87 |
+
|
88 |
+
def forward(self, hidden_states, attention_mask):
|
89 |
+
mixed_query_layer = self.query(hidden_states)
|
90 |
+
mixed_key_layer = self.key(hidden_states)
|
91 |
+
mixed_value_layer = self.value(hidden_states)
|
92 |
+
|
93 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
94 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
95 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
96 |
+
|
97 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
98 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
99 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
100 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
101 |
+
if attention_mask is not None:
|
102 |
+
attention_scores = attention_scores + attention_mask
|
103 |
+
|
104 |
+
# Normalize the attention scores to probabilities.
|
105 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
106 |
+
|
107 |
+
# This is actually dropping out entire tokens to attend to, which might
|
108 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
109 |
+
attention_probs = self.dropout(attention_probs)
|
110 |
+
|
111 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
112 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
113 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
114 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
115 |
+
return context_layer
|
116 |
+
|
117 |
+
|
118 |
+
class BertSelfOutput(nn.Module):
|
119 |
+
def __init__(self, config):
|
120 |
+
super(BertSelfOutput, self).__init__()
|
121 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
122 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
123 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
124 |
+
|
125 |
+
def forward(self, hidden_states, input_tensor):
|
126 |
+
hidden_states = self.dense(hidden_states)
|
127 |
+
hidden_states = self.dropout(hidden_states)
|
128 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
129 |
+
return hidden_states
|
130 |
+
|
131 |
+
|
132 |
+
class BertAttention(nn.Module):
|
133 |
+
def __init__(self, config):
|
134 |
+
super(BertAttention, self).__init__()
|
135 |
+
self.self = BertSelfAttention(config)
|
136 |
+
self.output = BertSelfOutput(config)
|
137 |
+
|
138 |
+
def forward(self, input_tensor, attention_mask):
|
139 |
+
self_output = self.self(input_tensor, attention_mask)
|
140 |
+
attention_output = self.output(self_output, input_tensor)
|
141 |
+
return attention_output
|
142 |
+
|
143 |
+
|
144 |
+
class BertIntermediate(nn.Module):
|
145 |
+
def __init__(self, config):
|
146 |
+
super(BertIntermediate, self).__init__()
|
147 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
148 |
+
self.intermediate_act_fn = gelu
|
149 |
+
|
150 |
+
def forward(self, hidden_states):
|
151 |
+
hidden_states = self.dense(hidden_states)
|
152 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
153 |
+
return hidden_states
|
154 |
+
|
155 |
+
|
156 |
+
class BertOutput(nn.Module):
|
157 |
+
def __init__(self, config):
|
158 |
+
super(BertOutput, self).__init__()
|
159 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
160 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
161 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
162 |
+
|
163 |
+
def forward(self, hidden_states, input_tensor):
|
164 |
+
hidden_states = self.dense(hidden_states)
|
165 |
+
hidden_states = self.dropout(hidden_states)
|
166 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
167 |
+
return hidden_states
|
168 |
+
|
169 |
+
|
170 |
+
class BertLayer(nn.Module):
|
171 |
+
def __init__(self, config):
|
172 |
+
super(BertLayer, self).__init__()
|
173 |
+
self.attention = BertAttention(config)
|
174 |
+
self.intermediate = BertIntermediate(config)
|
175 |
+
self.output = BertOutput(config)
|
176 |
+
|
177 |
+
def forward(self, hidden_states, attention_mask):
|
178 |
+
attention_output = self.attention(hidden_states, attention_mask)
|
179 |
+
intermediate_output = self.intermediate(attention_output)
|
180 |
+
layer_output = self.output(intermediate_output, attention_output)
|
181 |
+
return layer_output
|
182 |
+
|
183 |
+
|
184 |
+
class BertEncoder(nn.Module):
|
185 |
+
def __init__(self, config):
|
186 |
+
super(BertEncoder, self).__init__()
|
187 |
+
layer = BertLayer(config)
|
188 |
+
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
189 |
+
|
190 |
+
def forward(self, hidden_states, attention_mask=None, output_all_encoded_layers=True):
|
191 |
+
all_encoder_layers = []
|
192 |
+
for layer_module in self.layer:
|
193 |
+
hidden_states = layer_module(hidden_states, attention_mask)
|
194 |
+
if output_all_encoded_layers:
|
195 |
+
all_encoder_layers.append(hidden_states)
|
196 |
+
if not output_all_encoded_layers:
|
197 |
+
all_encoder_layers.append(hidden_states)
|
198 |
+
return all_encoder_layers
|
199 |
+
|
200 |
+
|
201 |
+
class BertEmbeddings(nn.Module):
|
202 |
+
"""Construct the embeddings from word, position and token_type embeddings.
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __init__(self, config):
|
206 |
+
super(BertEmbeddings, self).__init__()
|
207 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
208 |
+
|
209 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
210 |
+
# any TensorFlow checkpoint file
|
211 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
212 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
213 |
+
|
214 |
+
def forward(self, input_ids, token_type_ids=None):
|
215 |
+
seq_length = input_ids.size(1)
|
216 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
217 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids[:, :, 0])
|
218 |
+
|
219 |
+
position_embeddings = self.position_embeddings(position_ids)
|
220 |
+
|
221 |
+
embeddings = input_ids + position_embeddings
|
222 |
+
# embeddings = input_ids
|
223 |
+
embeddings = self.LayerNorm(embeddings)
|
224 |
+
embeddings = self.dropout(embeddings)
|
225 |
+
return embeddings
|
226 |
+
|
227 |
+
|
228 |
+
class PositionalEncoding(nn.Module):
|
229 |
+
def __init__(self, config):
|
230 |
+
super(PositionalEncoding, self).__init__()
|
231 |
+
emb_dim = config.hidden_size
|
232 |
+
max_len = config.max_position_embeddings
|
233 |
+
self.position_enc = self.position_encoding_init(max_len, emb_dim)
|
234 |
+
|
235 |
+
@staticmethod
|
236 |
+
def position_encoding_init(n_position, emb_dim):
|
237 |
+
''' Init the sinusoid position encoding table '''
|
238 |
+
|
239 |
+
# keep dim 0 for padding token position encoding zero vector
|
240 |
+
position_enc = np.array([
|
241 |
+
[pos / np.power(10000, 2 * (j // 2) / emb_dim) for j in range(emb_dim)]
|
242 |
+
if pos != 0 else np.zeros(emb_dim) for pos in range(n_position)])
|
243 |
+
|
244 |
+
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # apply sin on 0th,2nd,4th...emb_dim
|
245 |
+
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # apply cos on 1st,3rd,5th...emb_dim
|
246 |
+
return torch.from_numpy(position_enc).type(torch.FloatTensor)
|
247 |
+
|
248 |
+
def forward(self, word_seq):
|
249 |
+
position_encoding = self.position_enc.unsqueeze(0).expand_as(word_seq)
|
250 |
+
position_encoding = position_encoding.to(word_seq.device)
|
251 |
+
word_pos_encoded = word_seq + position_encoding
|
252 |
+
return word_pos_encoded
|
253 |
+
|
254 |
+
|
255 |
+
class BertPooler(nn.Module):
|
256 |
+
def __init__(self, config):
|
257 |
+
super(BertPooler, self).__init__()
|
258 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
259 |
+
self.activation = nn.Tanh()
|
260 |
+
|
261 |
+
def forward(self, hidden_states):
|
262 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
263 |
+
# to the first token.
|
264 |
+
first_token_tensor = hidden_states[:, 0]
|
265 |
+
pooled_output = self.dense(first_token_tensor)
|
266 |
+
pooled_output = self.activation(pooled_output)
|
267 |
+
return pooled_output
|
code/data.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('..')
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
import pickle
|
6 |
+
import random
|
7 |
+
from . import LyricsCommentData
|
8 |
+
|
9 |
+
class LyricsCommentsDataset(Dataset):
|
10 |
+
|
11 |
+
def __init__(self, random=False):
|
12 |
+
super(LyricsCommentsDataset, self).__init__()
|
13 |
+
self.random = random
|
14 |
+
with open("dataset.pkl", "rb") as f:
|
15 |
+
self.data = pickle.load(f)
|
16 |
+
|
17 |
+
def __len__(self):
|
18 |
+
return len(self.data)
|
19 |
+
|
20 |
+
def __getitem__(self, item):
|
21 |
+
lyrics = self.data[item].lyrics
|
22 |
+
# if random:
|
23 |
+
# comment = random.choice(self.data[item].comments)
|
24 |
+
# else:
|
25 |
+
comment = self.data[item].comments[0]
|
26 |
+
# the longest?
|
27 |
+
for i, (tmp_item, _) in enumerate(self.data[item].comments):
|
28 |
+
if len(tmp_item) > len(comment[0]):
|
29 |
+
comment = self.data[item].comments[i]
|
30 |
+
|
31 |
+
comment = comment[0] # keep comments w/o rating
|
32 |
+
|
33 |
+
return [lyrics, comment]
|
34 |
+
|
35 |
+
|
36 |
+
class LyricsCommentsDatasetClean(Dataset):
|
37 |
+
|
38 |
+
def __init__(self, random=False):
|
39 |
+
super(LyricsCommentsDatasetClean, self).__init__()
|
40 |
+
self.random = random
|
41 |
+
with open("cleaned_dataset.pkl", "rb") as f:
|
42 |
+
self.data = pickle.load(f)
|
43 |
+
|
44 |
+
def __len__(self):
|
45 |
+
return len(self.data)
|
46 |
+
|
47 |
+
def __getitem__(self, item):
|
48 |
+
lyrics = self.data[item].lyrics
|
49 |
+
comment = self.data[item].comment
|
50 |
+
|
51 |
+
return [lyrics, comment]
|
52 |
+
|
53 |
+
|
54 |
+
class LyricsCommentsDatasetPsuedo(Dataset):
|
55 |
+
|
56 |
+
def __init__(self, dataset_path, random=False):
|
57 |
+
super(LyricsCommentsDatasetPsuedo, self).__init__()
|
58 |
+
self.random = random
|
59 |
+
with open(dataset_path, "rb") as f:
|
60 |
+
self.data = pickle.load(f)
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, item):
|
66 |
+
lyrics = self.data[item].lyrics.replace('\n', ';')
|
67 |
+
comment = self.data[item].comment
|
68 |
+
|
69 |
+
return [lyrics, comment]
|
70 |
+
|
71 |
+
|
72 |
+
class LyricsCommentsDatasetPsuedo_fusion(Dataset):
|
73 |
+
|
74 |
+
def __init__(self, dataset_path):
|
75 |
+
super(LyricsCommentsDatasetPsuedo_fusion, self).__init__()
|
76 |
+
with open(dataset_path, "rb") as f:
|
77 |
+
self.data = pickle.load(f)
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.data)
|
81 |
+
|
82 |
+
|
83 |
+
def __getitem__(self, item):
|
84 |
+
lyrics = self.data[item].lyrics.replace('\n', ';')
|
85 |
+
comment = self.data[item].comment
|
86 |
+
music_id = self.data[item].music4all_id
|
87 |
+
|
88 |
+
return [lyrics, comment, music_id]
|
89 |
+
|
90 |
+
|
91 |
+
from torch.utils.data import Dataset, DataLoader
|
92 |
+
import torch
|
93 |
+
from MusicData import MusicData
|
94 |
+
import csv
|
95 |
+
import os
|
96 |
+
from pydub import AudioSegment
|
97 |
+
import matplotlib.pyplot as plt
|
98 |
+
from scipy.io import wavfile
|
99 |
+
from tempfile import mktemp
|
100 |
+
from scipy import signal
|
101 |
+
import numpy as np
|
102 |
+
import torchaudio
|
103 |
+
import transformers
|
104 |
+
import nltk
|
105 |
+
|
106 |
+
|
107 |
+
class Music4AllDataset(Dataset):
|
108 |
+
def __init__(self,
|
109 |
+
mel_bins,
|
110 |
+
audio_length,
|
111 |
+
pad_length,
|
112 |
+
tag_file_path=r"Music4All/music4all/id_genres.csv",
|
113 |
+
augment=True):
|
114 |
+
self.tag_file_path = tag_file_path
|
115 |
+
self.allow_cache = True
|
116 |
+
self.mel_bins = mel_bins
|
117 |
+
self.audio_length = audio_length
|
118 |
+
self.pad_length = pad_length
|
119 |
+
self.augment = augment
|
120 |
+
# read all tags
|
121 |
+
tags_file = open(tag_file_path, 'r', encoding='utf-8')
|
122 |
+
self.tags_reader = list(csv.reader(tags_file, delimiter='\t'))[1:]
|
123 |
+
tags_file.close()
|
124 |
+
if self.augment:
|
125 |
+
self.data_augmentation()
|
126 |
+
|
127 |
+
def data_augmentation(self):
|
128 |
+
pass
|
129 |
+
|
130 |
+
def __len__(self):
|
131 |
+
return len(self.tags_reader)
|
132 |
+
|
133 |
+
def __getitem__(self, item):
|
134 |
+
"""
|
135 |
+
|
136 |
+
:param item: index
|
137 |
+
:return: tags and mel-spectrogram.
|
138 |
+
"""
|
139 |
+
id = self.tags_reader[item][0]
|
140 |
+
tags = self.tags_reader[item][1] #.split(',')
|
141 |
+
|
142 |
+
# pad tags
|
143 |
+
# if len(tags) >= self.pad_length:
|
144 |
+
# tags = tags[:self.pad_length]
|
145 |
+
# else:
|
146 |
+
# for i in range(self.pad_length - len(tags)):
|
147 |
+
# tags.append("[PAD]")
|
148 |
+
|
149 |
+
spec_path = os.path.join("Music4All/temp_data/specs/data_cache/", id + ".npy")
|
150 |
+
exist_cache = os.path.isfile(spec_path)
|
151 |
+
# search cache
|
152 |
+
# if exist cache, load
|
153 |
+
if self.allow_cache and exist_cache:
|
154 |
+
spectrogram = torch.Tensor(np.load(spec_path))
|
155 |
+
# if does not exist, calculate and save
|
156 |
+
else:
|
157 |
+
audio_path = os.path.join("Music4All/music4all/audios",
|
158 |
+
id + '.mp3'
|
159 |
+
)
|
160 |
+
(data, sample_rate) = torchaudio.backend.sox_io_backend.load(audio_path)
|
161 |
+
spectrogram = torchaudio.transforms.MelSpectrogram(n_mels=self.mel_bins,
|
162 |
+
n_fft=512,
|
163 |
+
sample_rate=sample_rate,
|
164 |
+
f_max=8000.0,
|
165 |
+
f_min=0.0,
|
166 |
+
)(torch.Tensor(data))
|
167 |
+
# TODO: There is a huge bug!
|
168 |
+
# cut length
|
169 |
+
if self.audio_length is not None:
|
170 |
+
spectrogram = spectrogram[:, :, :self.audio_length]
|
171 |
+
# to mono
|
172 |
+
spectrogram = spectrogram[0, :, :].unsqueeze(0)
|
173 |
+
|
174 |
+
if self.allow_cache:
|
175 |
+
np.save(spec_path, spectrogram.numpy())
|
176 |
+
|
177 |
+
return tags, spectrogram
|
178 |
+
|
179 |
+
|
180 |
+
class MusCapsDataset(Dataset):
|
181 |
+
def __init__(self,
|
182 |
+
mel_bins,
|
183 |
+
audio_length,
|
184 |
+
pad_length,
|
185 |
+
tag_file_path=r"Music4All/music4all/id_genres.csv",
|
186 |
+
augment=True):
|
187 |
+
self.tag_file_path = tag_file_path
|
188 |
+
self.allow_cache = True
|
189 |
+
self.mel_bins = mel_bins
|
190 |
+
self.audio_length = audio_length
|
191 |
+
self.pad_length = pad_length
|
192 |
+
self.augment = augment
|
193 |
+
# read all tags
|
194 |
+
tags_file = open(tag_file_path, 'r', encoding='utf-8')
|
195 |
+
self.tags_reader = list(csv.reader(tags_file, delimiter='\t'))[1:]
|
196 |
+
tags_file.close()
|
197 |
+
if self.augment:
|
198 |
+
self.data_augmentation()
|
199 |
+
|
200 |
+
def data_augmentation(self):
|
201 |
+
pass
|
202 |
+
|
203 |
+
def __len__(self):
|
204 |
+
return len(self.tags_reader)
|
205 |
+
|
206 |
+
def __getitem__(self, item):
|
207 |
+
"""
|
208 |
+
|
209 |
+
:param item: index
|
210 |
+
:return: tags and mel-spectrogram.
|
211 |
+
"""
|
212 |
+
id = self.tags_reader[item][0]
|
213 |
+
tags = self.tags_reader[item][1] #.split(',')
|
214 |
+
|
215 |
+
# pad tags
|
216 |
+
# if len(tags) >= self.pad_length:
|
217 |
+
# tags = tags[:self.pad_length]
|
218 |
+
# else:
|
219 |
+
# for i in range(self.pad_length - len(tags)):
|
220 |
+
# tags.append("[PAD]")
|
221 |
+
|
222 |
+
spec_path = os.path.join("Music4All/temp_data/specs/data_cache/", id + ".npy")
|
223 |
+
exist_cache = os.path.isfile(spec_path)
|
224 |
+
# search cache
|
225 |
+
# if exist cache, load
|
226 |
+
if self.allow_cache and exist_cache:
|
227 |
+
spectrogram = torch.Tensor(np.load(spec_path))
|
228 |
+
# if does not exist, calculate and save
|
229 |
+
else:
|
230 |
+
audio_path = os.path.join("Music4All/music4all/audios",
|
231 |
+
id + '.mp3'
|
232 |
+
)
|
233 |
+
(data, sample_rate) = torchaudio.backend.sox_io_backend.load(audio_path)
|
234 |
+
spectrogram = torchaudio.transforms.MelSpectrogram(n_mels=self.mel_bins,
|
235 |
+
n_fft=512,
|
236 |
+
sample_rate=sample_rate,
|
237 |
+
f_max=8000.0,
|
238 |
+
f_min=0.0,
|
239 |
+
)(torch.Tensor(data))
|
240 |
+
# cut length
|
241 |
+
if self.audio_length is not None:
|
242 |
+
spectrogram = spectrogram[:, :, :self.audio_length]
|
243 |
+
# to mono
|
244 |
+
spectrogram = spectrogram[0, :, :].unsqueeze(0)
|
245 |
+
np.save(spec_path, spectrogram.numpy())
|
246 |
+
|
247 |
+
return tags, spectrogram
|
248 |
+
|
249 |
+
class GTZANDataset(Dataset):
|
250 |
+
def __init__(self, raw_dataset, is_augment=True, window=1366):
|
251 |
+
self.raw = raw_dataset
|
252 |
+
self.data = list()
|
253 |
+
self.mel_bins = 96
|
254 |
+
self.gtzan_genres = [
|
255 |
+
"blues",
|
256 |
+
"classical",
|
257 |
+
"country",
|
258 |
+
"disco",
|
259 |
+
"hiphop",
|
260 |
+
"jazz",
|
261 |
+
"metal",
|
262 |
+
"pop",
|
263 |
+
"reggae",
|
264 |
+
"rock",
|
265 |
+
]
|
266 |
+
self.is_augment = is_augment
|
267 |
+
self.window = window
|
268 |
+
self.init()
|
269 |
+
|
270 |
+
def init(self):
|
271 |
+
for i, (waveform, sample_rate, label) in enumerate(self.raw):
|
272 |
+
spectrogram = torchaudio.transforms.MelSpectrogram(n_mels=self.mel_bins)(torch.Tensor(waveform))
|
273 |
+
if self.is_augment:
|
274 |
+
self.augment(spectrogram, label)
|
275 |
+
else:
|
276 |
+
self.data.append((spectrogram[:,:,:self.window], label))
|
277 |
+
|
278 |
+
def augment(self, spectrogram, label):
|
279 |
+
length = spectrogram.shape[-1] # length
|
280 |
+
# augment audio with sliding window
|
281 |
+
hop_length = 250
|
282 |
+
slices = (length - self.window) // hop_length
|
283 |
+
for i in range(slices):
|
284 |
+
self.data.append((spectrogram[:, :, i * hop_length:self.window + i*hop_length], label))
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
def __len__(self):
|
289 |
+
return len(self.data)
|
290 |
+
|
291 |
+
def __getitem__(self, index):
|
292 |
+
spectrogram, label = self.data[index]
|
293 |
+
label = self.gtzan_genres.index(label)
|
294 |
+
return spectrogram, label
|
295 |
+
|
296 |
+
|
297 |
+
|
code/eval.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from data import LyricsCommentsDatasetPsuedo_fusion
|
3 |
+
from torch import utils, nn
|
4 |
+
from model import CommentGenerator
|
5 |
+
from model_fusion import CommentGenerator_fusion
|
6 |
+
import transformers
|
7 |
+
import datasets
|
8 |
+
from tqdm import tqdm
|
9 |
+
import statistics
|
10 |
+
import os
|
11 |
+
DATASET_PATH = "dataset_test.pkl"
|
12 |
+
MODEL_PATH = "model/bart_fusion_full.pt"
|
13 |
+
# MODEL_NAME = "bart"
|
14 |
+
|
15 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
|
16 |
+
|
17 |
+
test_dataset = LyricsCommentsDatasetPsuedo_fusion(DATASET_PATH)
|
18 |
+
dataset_length = len(test_dataset)
|
19 |
+
|
20 |
+
test_dataloader = utils.data.DataLoader(test_dataset,
|
21 |
+
# batch_size=len(valid_dataset),
|
22 |
+
batch_size=32,
|
23 |
+
shuffle=False)
|
24 |
+
|
25 |
+
if 'baseline' in MODEL_PATH:
|
26 |
+
model = CommentGenerator().cuda()
|
27 |
+
else:
|
28 |
+
model = CommentGenerator_fusion().cuda()
|
29 |
+
model.load_state_dict(torch.load(MODEL_PATH))
|
30 |
+
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
samples_list = list()
|
34 |
+
# generate
|
35 |
+
for batch_index, [lyrics, comment, music_id] in enumerate(tqdm(test_dataloader)):
|
36 |
+
if 'baseline' in MODEL_PATH:
|
37 |
+
with torch.no_grad():
|
38 |
+
output_samples = model.generate(lyrics)
|
39 |
+
else:
|
40 |
+
with torch.no_grad():
|
41 |
+
output_samples = model.generate(lyrics, music_id)
|
42 |
+
samples_list.append(output_samples)
|
43 |
+
|
44 |
+
# ------ ROUGE ------ #
|
45 |
+
|
46 |
+
metrics = datasets.load_metric('rouge')#, 'sacrebleu', 'meteor', 'bertscore')
|
47 |
+
|
48 |
+
for batch_index, [lyrics, comment, music_id] in enumerate(tqdm(test_dataloader)):
|
49 |
+
output_samples = samples_list[batch_index]
|
50 |
+
metrics.add_batch(predictions=output_samples, references=comment)
|
51 |
+
|
52 |
+
score = metrics.compute()
|
53 |
+
print(score)
|
54 |
+
|
55 |
+
# ------ BLEU ------ #
|
56 |
+
|
57 |
+
metrics = datasets.load_metric('sacrebleu')#, 'sacrebleu', 'meteor', 'bertscore')
|
58 |
+
|
59 |
+
for batch_index, [lyrics, comment, music_id] in enumerate(tqdm(test_dataloader)):
|
60 |
+
output_samples = samples_list[batch_index]
|
61 |
+
metrics.add_batch(predictions=output_samples, references=[[i] for i in comment])
|
62 |
+
|
63 |
+
score = metrics.compute()
|
64 |
+
print(score)
|
65 |
+
|
66 |
+
# ------ BERTScore ------ #
|
67 |
+
|
68 |
+
metrics = datasets.load_metric('bertscore')#, 'sacrebleu', 'meteor', 'bertscore')
|
69 |
+
|
70 |
+
for batch_index, [lyrics, comment, music_id] in enumerate(tqdm(test_dataloader)):
|
71 |
+
output_samples = samples_list[batch_index]
|
72 |
+
metrics.add_batch(predictions=output_samples, references=[[i] for i in comment])
|
73 |
+
|
74 |
+
score = metrics.compute(lang='en')
|
75 |
+
score = statistics.mean(score['f1'])
|
76 |
+
print(score)
|
77 |
+
|
78 |
+
# ------ METEOR ------ #
|
79 |
+
|
80 |
+
metrics = datasets.load_metric('meteor')#, 'sacrebleu', 'meteor', 'bertscore')
|
81 |
+
|
82 |
+
for batch_index, [lyrics, comment, music_id] in enumerate(tqdm(test_dataloader)):
|
83 |
+
output_samples = samples_list[batch_index]
|
84 |
+
metrics.add_batch(predictions=output_samples, references=[[i] for i in comment])
|
85 |
+
|
86 |
+
score = metrics.compute()
|
87 |
+
print(score)
|
code/model.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
4 |
+
|
5 |
+
|
6 |
+
class CommentGenerator(nn.Module):
|
7 |
+
def __init__(self):
|
8 |
+
super(CommentGenerator, self).__init__()
|
9 |
+
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
10 |
+
self.bart = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
|
11 |
+
# self.bart_config = BartConfig()
|
12 |
+
self.condition = None
|
13 |
+
|
14 |
+
|
15 |
+
def forward(self, input_sentence_list, labels=None):
|
16 |
+
encoded_input = self.tokenizer(
|
17 |
+
input_sentence_list,
|
18 |
+
padding=True,
|
19 |
+
truncation=True,
|
20 |
+
max_length=512,
|
21 |
+
return_tensors='pt',
|
22 |
+
)
|
23 |
+
if labels is not None:
|
24 |
+
labels = self.tokenizer(
|
25 |
+
labels,
|
26 |
+
padding=True,
|
27 |
+
truncation=True,
|
28 |
+
max_length=512,
|
29 |
+
return_tensors='pt',
|
30 |
+
)
|
31 |
+
output = self.bart(input_ids=encoded_input['input_ids'].cuda(),
|
32 |
+
attention_mask=encoded_input['attention_mask'].cuda(),
|
33 |
+
labels=labels['input_ids'].cuda(),
|
34 |
+
# labels
|
35 |
+
)
|
36 |
+
return output
|
37 |
+
|
38 |
+
def generate(self, input_sentence_list, is_cuda=True):
|
39 |
+
encoded_input = self.tokenizer(input_sentence_list,
|
40 |
+
padding=True,
|
41 |
+
truncation=True,
|
42 |
+
return_tensors='pt',
|
43 |
+
)
|
44 |
+
output_ids = self.bart.generate(encoded_input['input_ids'].cuda(),
|
45 |
+
num_beams=4,
|
46 |
+
max_length=512,
|
47 |
+
early_stopping=True,
|
48 |
+
do_sample=True)
|
49 |
+
return ([self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
50 |
+
for g in output_ids])
|
51 |
+
# tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
52 |
+
# encoded_input = tokenizer(['Hello all', 'Hi all'], return_tensors='pt')
|
53 |
+
# print(encoded_input)
|
54 |
+
|
55 |
+
|
56 |
+
|
code/model_fusion.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import BartTokenizer
|
4 |
+
from modeling_bart import BartForMultimodalGeneration
|
5 |
+
from music_encoder import CNNSA
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class CommentGenerator_fusion(nn.Module):
|
10 |
+
def __init__(self):
|
11 |
+
super(CommentGenerator_fusion, self).__init__()
|
12 |
+
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
13 |
+
model_path = "best_model.pth"
|
14 |
+
self.music_encoder = CNNSA().cuda()
|
15 |
+
self.music_encoder.load_state_dict(torch.load(model_path))
|
16 |
+
# trial: fix music encoder's params
|
17 |
+
for params in self.music_encoder.parameters():
|
18 |
+
params.requires_grad = False
|
19 |
+
|
20 |
+
self.bart = BartForMultimodalGeneration.from_pretrained("facebook/bart-base",
|
21 |
+
fusion_layers=[4,5], # [4,5]
|
22 |
+
use_forget_gate=False, # [True]
|
23 |
+
dim_common=768, # 256
|
24 |
+
n_attn_heads=1).cuda()
|
25 |
+
|
26 |
+
|
27 |
+
def forward(self, input_sentence_list, music_ids, labels=None):
|
28 |
+
encoded_input = self.tokenizer(
|
29 |
+
input_sentence_list,
|
30 |
+
padding=True,
|
31 |
+
truncation=True,
|
32 |
+
max_length=512,
|
33 |
+
return_tensors='pt',
|
34 |
+
)
|
35 |
+
if labels is not None:
|
36 |
+
labels = self.tokenizer(
|
37 |
+
labels,
|
38 |
+
padding=True,
|
39 |
+
truncation=True,
|
40 |
+
max_length=512,
|
41 |
+
return_tensors='pt',
|
42 |
+
)
|
43 |
+
music_features = self.music_encoder(music_ids)
|
44 |
+
output = self.bart(input_ids=encoded_input['input_ids'].cuda(),
|
45 |
+
attention_mask=encoded_input['attention_mask'].cuda(),
|
46 |
+
labels=labels['input_ids'].cuda(),
|
47 |
+
music_features=music_features
|
48 |
+
# labels
|
49 |
+
)
|
50 |
+
return output
|
51 |
+
|
52 |
+
def generate(self, input_sentence_list, music_ids, is_cuda=True):
|
53 |
+
encoded_input = self.tokenizer(input_sentence_list,
|
54 |
+
padding=True,
|
55 |
+
truncation=True,
|
56 |
+
return_tensors='pt',
|
57 |
+
)
|
58 |
+
music_features = self.music_encoder(music_ids)
|
59 |
+
output_ids = self.bart.generate(encoded_input['input_ids'].cuda(),
|
60 |
+
num_beams=5,
|
61 |
+
max_length=512,
|
62 |
+
early_stopping=True,
|
63 |
+
do_sample=True,
|
64 |
+
music_features=music_features)
|
65 |
+
return ([self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
66 |
+
for g in output_ids])
|
67 |
+
# tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
68 |
+
# encoded_input = tokenizer(['Hello all', 'Hi all'], return_tensors='pt')
|
69 |
+
# print(encoded_input)
|
code/modeling_bart.py
ADDED
@@ -0,0 +1,1483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
# Revised by anonymous.
|
4 |
+
|
5 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
""" PyTorch BART model. """
|
19 |
+
import copy
|
20 |
+
import math
|
21 |
+
import random
|
22 |
+
import warnings
|
23 |
+
from typing import Optional, Tuple
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.file_utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_end_docstrings,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from transformers.modeling_outputs import (
|
41 |
+
BaseModelOutput,
|
42 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
43 |
+
CausalLMOutputWithCrossAttentions,
|
44 |
+
Seq2SeqLMOutput,
|
45 |
+
Seq2SeqModelOutput,
|
46 |
+
Seq2SeqQuestionAnsweringModelOutput,
|
47 |
+
Seq2SeqSequenceClassifierOutput,
|
48 |
+
)
|
49 |
+
from transformers.modeling_utils import PreTrainedModel
|
50 |
+
from transformers.utils import logging
|
51 |
+
from transformers.models.bart.configuration_bart import BartConfig
|
52 |
+
|
53 |
+
from music_encoder import CNNSA
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CHECKPOINT_FOR_DOC = "facebook/bart-large"
|
58 |
+
_CONFIG_FOR_DOC = "BartConfig"
|
59 |
+
_TOKENIZER_FOR_DOC = "BartTokenizer"
|
60 |
+
|
61 |
+
|
62 |
+
BART_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
63 |
+
"facebook/bart-large",
|
64 |
+
# See all BART models at https://huggingface.co/models?filter=bart
|
65 |
+
]
|
66 |
+
|
67 |
+
|
68 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
69 |
+
"""
|
70 |
+
Shift input ids one token to the right.
|
71 |
+
"""
|
72 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
73 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
74 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
75 |
+
|
76 |
+
if pad_token_id is None:
|
77 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
78 |
+
# replace possible -100 values in labels by `pad_token_id`
|
79 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
80 |
+
|
81 |
+
return shifted_input_ids
|
82 |
+
|
83 |
+
|
84 |
+
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
|
85 |
+
"""
|
86 |
+
Make causal mask used for bi-directional self-attention.
|
87 |
+
"""
|
88 |
+
bsz, tgt_len = input_ids_shape
|
89 |
+
mask = torch.full((tgt_len, tgt_len), float("-inf"))
|
90 |
+
mask_cond = torch.arange(mask.size(-1))
|
91 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
92 |
+
mask = mask.to(dtype)
|
93 |
+
|
94 |
+
if past_key_values_length > 0:
|
95 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
|
96 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
97 |
+
|
98 |
+
|
99 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
100 |
+
"""
|
101 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
102 |
+
"""
|
103 |
+
bsz, src_len = mask.size()
|
104 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
105 |
+
|
106 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
107 |
+
|
108 |
+
inverted_mask = 1.0 - expanded_mask
|
109 |
+
|
110 |
+
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
|
111 |
+
|
112 |
+
|
113 |
+
class BartLearnedPositionalEmbedding(nn.Embedding):
|
114 |
+
"""
|
115 |
+
This module learns positional embeddings up to a fixed maximum size.
|
116 |
+
"""
|
117 |
+
|
118 |
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
119 |
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
120 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
121 |
+
self.offset = 2
|
122 |
+
super().__init__(num_embeddings + self.offset, embedding_dim)
|
123 |
+
|
124 |
+
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
|
125 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
126 |
+
bsz, seq_len = input_ids_shape[:2]
|
127 |
+
positions = torch.arange(
|
128 |
+
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
|
129 |
+
)
|
130 |
+
return super().forward(positions + self.offset)
|
131 |
+
|
132 |
+
|
133 |
+
class BartAttention(nn.Module):
|
134 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
embed_dim: int,
|
139 |
+
num_heads: int,
|
140 |
+
dropout: float = 0.0,
|
141 |
+
is_decoder: bool = False,
|
142 |
+
bias: bool = True,
|
143 |
+
):
|
144 |
+
super().__init__()
|
145 |
+
self.embed_dim = embed_dim
|
146 |
+
self.num_heads = num_heads
|
147 |
+
self.dropout = dropout
|
148 |
+
self.head_dim = embed_dim // num_heads
|
149 |
+
|
150 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
151 |
+
raise ValueError(
|
152 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
153 |
+
f" and `num_heads`: {num_heads})."
|
154 |
+
)
|
155 |
+
self.scaling = self.head_dim ** -0.5
|
156 |
+
self.is_decoder = is_decoder
|
157 |
+
|
158 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
159 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
160 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
161 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
162 |
+
|
163 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
164 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
165 |
+
|
166 |
+
def forward(
|
167 |
+
self,
|
168 |
+
hidden_states: torch.Tensor,
|
169 |
+
key_value_states: Optional[torch.Tensor] = None,
|
170 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
172 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
173 |
+
output_attentions: bool = False,
|
174 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
175 |
+
"""Input shape: Batch x Time x Channel"""
|
176 |
+
|
177 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
178 |
+
# for the decoder
|
179 |
+
is_cross_attention = key_value_states is not None
|
180 |
+
|
181 |
+
bsz, tgt_len, _ = hidden_states.size()
|
182 |
+
|
183 |
+
# get query proj
|
184 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
185 |
+
# get key, value proj
|
186 |
+
if is_cross_attention and past_key_value is not None:
|
187 |
+
# reuse k,v, cross_attentions
|
188 |
+
key_states = past_key_value[0]
|
189 |
+
value_states = past_key_value[1]
|
190 |
+
elif is_cross_attention:
|
191 |
+
# cross_attentions
|
192 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
193 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
194 |
+
elif past_key_value is not None:
|
195 |
+
# reuse k, v, self_attention
|
196 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
197 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
198 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
199 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
200 |
+
else:
|
201 |
+
# self_attention
|
202 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
203 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
204 |
+
|
205 |
+
if self.is_decoder:
|
206 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
207 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
208 |
+
# key/value_states (first "if" case)
|
209 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
210 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
211 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
212 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
213 |
+
past_key_value = (key_states, value_states)
|
214 |
+
|
215 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
216 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
217 |
+
key_states = key_states.view(*proj_shape)
|
218 |
+
value_states = value_states.view(*proj_shape)
|
219 |
+
|
220 |
+
src_len = key_states.size(1)
|
221 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
222 |
+
|
223 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
224 |
+
raise ValueError(
|
225 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
226 |
+
)
|
227 |
+
|
228 |
+
if attention_mask is not None:
|
229 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
230 |
+
raise ValueError(
|
231 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
232 |
+
)
|
233 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
234 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
235 |
+
|
236 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
237 |
+
|
238 |
+
if layer_head_mask is not None:
|
239 |
+
if layer_head_mask.size() != (self.num_heads,):
|
240 |
+
raise ValueError(
|
241 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
|
242 |
+
)
|
243 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
244 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
245 |
+
|
246 |
+
if output_attentions:
|
247 |
+
# this operation is a bit awkward, but it's required to
|
248 |
+
# make sure that attn_weights keeps its gradient.
|
249 |
+
# In order to do so, attn_weights have to be reshaped
|
250 |
+
# twice and have to be reused in the following
|
251 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
252 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
253 |
+
else:
|
254 |
+
attn_weights_reshaped = None
|
255 |
+
|
256 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
257 |
+
|
258 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
259 |
+
|
260 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
261 |
+
raise ValueError(
|
262 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
|
263 |
+
)
|
264 |
+
|
265 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
266 |
+
attn_output = attn_output.transpose(1, 2)
|
267 |
+
|
268 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
269 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
270 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
271 |
+
|
272 |
+
attn_output = self.out_proj(attn_output)
|
273 |
+
|
274 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
275 |
+
|
276 |
+
|
277 |
+
class BartEncoderLayer(nn.Module):
|
278 |
+
def __init__(self, config: BartConfig):
|
279 |
+
super().__init__()
|
280 |
+
self.embed_dim = config.d_model
|
281 |
+
self.self_attn = BartAttention(
|
282 |
+
embed_dim=self.embed_dim,
|
283 |
+
num_heads=config.encoder_attention_heads,
|
284 |
+
dropout=config.attention_dropout,
|
285 |
+
)
|
286 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
287 |
+
self.dropout = config.dropout
|
288 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
289 |
+
self.activation_dropout = config.activation_dropout
|
290 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
291 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
292 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
293 |
+
|
294 |
+
def forward(
|
295 |
+
self,
|
296 |
+
hidden_states: torch.Tensor,
|
297 |
+
attention_mask: torch.Tensor,
|
298 |
+
layer_head_mask: torch.Tensor,
|
299 |
+
output_attentions: bool = False,
|
300 |
+
):
|
301 |
+
"""
|
302 |
+
Args:
|
303 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
|
304 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
305 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
306 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
307 |
+
*(encoder_attention_heads,)*.
|
308 |
+
output_attentions (`bool`, *optional*):
|
309 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
310 |
+
returned tensors for more detail.
|
311 |
+
"""
|
312 |
+
residual = hidden_states
|
313 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
314 |
+
hidden_states=hidden_states,
|
315 |
+
attention_mask=attention_mask,
|
316 |
+
layer_head_mask=layer_head_mask,
|
317 |
+
output_attentions=output_attentions,
|
318 |
+
)
|
319 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
320 |
+
hidden_states = residual + hidden_states
|
321 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
322 |
+
|
323 |
+
residual = hidden_states
|
324 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
325 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
326 |
+
hidden_states = self.fc2(hidden_states)
|
327 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
328 |
+
hidden_states = residual + hidden_states
|
329 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
330 |
+
|
331 |
+
if hidden_states.dtype == torch.float16 and (
|
332 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
333 |
+
):
|
334 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
335 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
336 |
+
|
337 |
+
outputs = (hidden_states,)
|
338 |
+
|
339 |
+
if output_attentions:
|
340 |
+
outputs += (attn_weights,)
|
341 |
+
|
342 |
+
return outputs
|
343 |
+
|
344 |
+
|
345 |
+
class BartDecoderLayer(nn.Module):
|
346 |
+
def __init__(self, config: BartConfig):
|
347 |
+
super().__init__()
|
348 |
+
self.embed_dim = config.d_model
|
349 |
+
|
350 |
+
self.self_attn = BartAttention(
|
351 |
+
embed_dim=self.embed_dim,
|
352 |
+
num_heads=config.decoder_attention_heads,
|
353 |
+
dropout=config.attention_dropout,
|
354 |
+
is_decoder=True,
|
355 |
+
)
|
356 |
+
self.dropout = config.dropout
|
357 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
358 |
+
self.activation_dropout = config.activation_dropout
|
359 |
+
|
360 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
361 |
+
self.encoder_attn = BartAttention(
|
362 |
+
self.embed_dim,
|
363 |
+
config.decoder_attention_heads,
|
364 |
+
dropout=config.attention_dropout,
|
365 |
+
is_decoder=True,
|
366 |
+
)
|
367 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
368 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
369 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
370 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
371 |
+
|
372 |
+
def forward(
|
373 |
+
self,
|
374 |
+
hidden_states: torch.Tensor,
|
375 |
+
attention_mask: Optional[torch.Tensor] = None,
|
376 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
377 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
378 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
379 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
380 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
381 |
+
output_attentions: Optional[bool] = False,
|
382 |
+
use_cache: Optional[bool] = True,
|
383 |
+
):
|
384 |
+
"""
|
385 |
+
Args:
|
386 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
|
387 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
388 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
389 |
+
encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
|
390 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
391 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
392 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
393 |
+
*(encoder_attention_heads,)*.
|
394 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
395 |
+
size *(decoder_attention_heads,)*.
|
396 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
397 |
+
output_attentions (`bool`, *optional*):
|
398 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
399 |
+
returned tensors for more detail.
|
400 |
+
"""
|
401 |
+
residual = hidden_states
|
402 |
+
|
403 |
+
# Self Attention
|
404 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
405 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
406 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
407 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
408 |
+
hidden_states=hidden_states,
|
409 |
+
past_key_value=self_attn_past_key_value,
|
410 |
+
attention_mask=attention_mask,
|
411 |
+
layer_head_mask=layer_head_mask,
|
412 |
+
output_attentions=output_attentions,
|
413 |
+
)
|
414 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
415 |
+
hidden_states = residual + hidden_states
|
416 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
417 |
+
|
418 |
+
# Cross-Attention Block
|
419 |
+
cross_attn_present_key_value = None
|
420 |
+
cross_attn_weights = None
|
421 |
+
if encoder_hidden_states is not None:
|
422 |
+
residual = hidden_states
|
423 |
+
|
424 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
425 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
426 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
427 |
+
hidden_states=hidden_states,
|
428 |
+
key_value_states=encoder_hidden_states,
|
429 |
+
attention_mask=encoder_attention_mask,
|
430 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
431 |
+
past_key_value=cross_attn_past_key_value,
|
432 |
+
output_attentions=output_attentions,
|
433 |
+
)
|
434 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
435 |
+
hidden_states = residual + hidden_states
|
436 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
437 |
+
|
438 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
439 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
440 |
+
|
441 |
+
# Fully Connected
|
442 |
+
residual = hidden_states
|
443 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
444 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
445 |
+
hidden_states = self.fc2(hidden_states)
|
446 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
447 |
+
hidden_states = residual + hidden_states
|
448 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
449 |
+
|
450 |
+
outputs = (hidden_states,)
|
451 |
+
|
452 |
+
if output_attentions:
|
453 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
454 |
+
|
455 |
+
if use_cache:
|
456 |
+
outputs += (present_key_value,)
|
457 |
+
|
458 |
+
return outputs
|
459 |
+
|
460 |
+
|
461 |
+
class BartClassificationHead(nn.Module):
|
462 |
+
"""Head for sentence-level classification tasks."""
|
463 |
+
|
464 |
+
def __init__(
|
465 |
+
self,
|
466 |
+
input_dim: int,
|
467 |
+
inner_dim: int,
|
468 |
+
num_classes: int,
|
469 |
+
pooler_dropout: float,
|
470 |
+
):
|
471 |
+
super().__init__()
|
472 |
+
self.dense = nn.Linear(input_dim, inner_dim)
|
473 |
+
self.dropout = nn.Dropout(p=pooler_dropout)
|
474 |
+
self.out_proj = nn.Linear(inner_dim, num_classes)
|
475 |
+
|
476 |
+
def forward(self, hidden_states: torch.Tensor):
|
477 |
+
hidden_states = self.dropout(hidden_states)
|
478 |
+
hidden_states = self.dense(hidden_states)
|
479 |
+
hidden_states = torch.tanh(hidden_states)
|
480 |
+
hidden_states = self.dropout(hidden_states)
|
481 |
+
hidden_states = self.out_proj(hidden_states)
|
482 |
+
return hidden_states
|
483 |
+
|
484 |
+
|
485 |
+
class BartPretrainedModel(PreTrainedModel):
|
486 |
+
config_class = BartConfig
|
487 |
+
base_model_prefix = "model"
|
488 |
+
supports_gradient_checkpointing = True
|
489 |
+
_keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"]
|
490 |
+
|
491 |
+
def _init_weights(self, module):
|
492 |
+
std = self.config.init_std
|
493 |
+
if isinstance(module, nn.Linear):
|
494 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
495 |
+
if module.bias is not None:
|
496 |
+
module.bias.data.zero_()
|
497 |
+
elif isinstance(module, nn.Embedding):
|
498 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
499 |
+
if module.padding_idx is not None:
|
500 |
+
module.weight.data[module.padding_idx].zero_()
|
501 |
+
|
502 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
503 |
+
if isinstance(module, (BartDecoder, BartEncoder)):
|
504 |
+
module.gradient_checkpointing = value
|
505 |
+
|
506 |
+
@property
|
507 |
+
def dummy_inputs(self):
|
508 |
+
pad_token = self.config.pad_token_id
|
509 |
+
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
|
510 |
+
dummy_inputs = {
|
511 |
+
"attention_mask": input_ids.ne(pad_token),
|
512 |
+
"input_ids": input_ids,
|
513 |
+
}
|
514 |
+
return dummy_inputs
|
515 |
+
|
516 |
+
|
517 |
+
class PretrainedBartModel(BartPretrainedModel):
|
518 |
+
def __init_subclass__(self):
|
519 |
+
warnings.warn(
|
520 |
+
"The class `PretrainedBartModel` has been depreciated, please use `BartPretrainedModel` instead.",
|
521 |
+
FutureWarning,
|
522 |
+
)
|
523 |
+
|
524 |
+
|
525 |
+
BART_START_DOCSTRING = r"""
|
526 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic
|
527 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
528 |
+
pruning heads etc.)
|
529 |
+
|
530 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
531 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
532 |
+
general usage and behavior.
|
533 |
+
|
534 |
+
Parameters:
|
535 |
+
config ([`BartConfig`]):
|
536 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
537 |
+
load the weights associated with the model, only the configuration. Check out the
|
538 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
539 |
+
"""
|
540 |
+
|
541 |
+
BART_GENERATION_EXAMPLE = r"""
|
542 |
+
Summarization example::
|
543 |
+
|
544 |
+
>>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
|
545 |
+
|
546 |
+
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
547 |
+
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
548 |
+
|
549 |
+
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
|
550 |
+
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
|
551 |
+
|
552 |
+
>>> # Generate Summary
|
553 |
+
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
|
554 |
+
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
|
555 |
+
|
556 |
+
Mask filling example::
|
557 |
+
|
558 |
+
>>> from transformers import BartTokenizer, BartForConditionalGeneration
|
559 |
+
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
|
560 |
+
>>> TXT = "My friends are <mask> but they eat too many carbs."
|
561 |
+
|
562 |
+
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
|
563 |
+
>>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
|
564 |
+
>>> logits = model(input_ids).logits
|
565 |
+
|
566 |
+
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
|
567 |
+
>>> probs = logits[0, masked_index].softmax(dim=0)
|
568 |
+
>>> values, predictions = probs.topk(5)
|
569 |
+
|
570 |
+
>>> tokenizer.decode(predictions).split()
|
571 |
+
"""
|
572 |
+
|
573 |
+
BART_INPUTS_DOCSTRING = r"""
|
574 |
+
Args:
|
575 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
576 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
577 |
+
it.
|
578 |
+
|
579 |
+
Indices can be obtained using [`BartTokenizer`]. See
|
580 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
|
581 |
+
details.
|
582 |
+
|
583 |
+
[What are input IDs?](../glossary#input-ids)
|
584 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
585 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
586 |
+
|
587 |
+
- 1 for tokens that are **not masked**,
|
588 |
+
- 0 for tokens that are **masked**.
|
589 |
+
|
590 |
+
[What are attention masks?](../glossary#attention-mask)
|
591 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
592 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
593 |
+
|
594 |
+
Indices can be obtained using [`BartTokenizer`]. See
|
595 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
|
596 |
+
details.
|
597 |
+
|
598 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
599 |
+
|
600 |
+
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
601 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
602 |
+
`past_key_values`).
|
603 |
+
|
604 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
605 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to
|
606 |
+
the right for denoising pre-training following the paper.
|
607 |
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
608 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will
|
609 |
+
also be used by default.
|
610 |
+
|
611 |
+
If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_inputs`] and
|
612 |
+
modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
613 |
+
information on the default strategy.
|
614 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
615 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
616 |
+
|
617 |
+
- 1 indicates the head is **not masked**,
|
618 |
+
- 0 indicates the head is **masked**.
|
619 |
+
|
620 |
+
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
621 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
622 |
+
|
623 |
+
- 1 indicates the head is **not masked**,
|
624 |
+
- 0 indicates the head is **masked**.
|
625 |
+
|
626 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
627 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`:
|
628 |
+
|
629 |
+
- 1 indicates the head is **not masked**,
|
630 |
+
- 0 indicates the head is **masked**.
|
631 |
+
|
632 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
633 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
|
634 |
+
`attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`,
|
635 |
+
*optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
636 |
+
cross-attention of the decoder.
|
637 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
638 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors
|
639 |
+
of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
640 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
641 |
+
|
642 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
643 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
644 |
+
|
645 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
|
646 |
+
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
|
647 |
+
instead of all ``decoder_input_ids``` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated
|
648 |
+
vectors than the model's internal embedding lookup matrix.
|
649 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
650 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
651 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds`
|
652 |
+
have to be input (see `past_key_values`). This is useful if you want more control over how to convert
|
653 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
654 |
+
|
655 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds`
|
656 |
+
takes the value of `inputs_embeds`.
|
657 |
+
use_cache (`bool`, *optional*):
|
658 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
|
659 |
+
decoding (see `past_key_values`).
|
660 |
+
output_attentions (`bool`, *optional*):
|
661 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
662 |
+
tensors for more detail.
|
663 |
+
output_hidden_states (`bool`, *optional*):
|
664 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
665 |
+
more detail.
|
666 |
+
return_dict (`bool`, *optional*):
|
667 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
668 |
+
"""
|
669 |
+
|
670 |
+
|
671 |
+
class BartEncoder(BartPretrainedModel):
|
672 |
+
"""
|
673 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
674 |
+
[`BartEncoderLayer`].
|
675 |
+
|
676 |
+
Args:
|
677 |
+
config: BartConfig
|
678 |
+
embed_tokens (nn.Embedding): output embedding
|
679 |
+
"""
|
680 |
+
|
681 |
+
def __init__(self, config: BartConfig,
|
682 |
+
embed_tokens: Optional[nn.Embedding] = None,
|
683 |
+
fusion_layers=[5], # 5 is the last layer
|
684 |
+
use_forget_gate=True,
|
685 |
+
dim_common=256,
|
686 |
+
n_attn_heads=1):
|
687 |
+
super().__init__(config)
|
688 |
+
|
689 |
+
self.dropout = config.dropout
|
690 |
+
self.layerdrop = config.encoder_layerdrop
|
691 |
+
|
692 |
+
embed_dim = config.d_model
|
693 |
+
self.padding_idx = config.pad_token_id
|
694 |
+
self.max_source_positions = config.max_position_embeddings
|
695 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
696 |
+
|
697 |
+
if embed_tokens is not None:
|
698 |
+
self.embed_tokens = embed_tokens
|
699 |
+
else:
|
700 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
|
701 |
+
|
702 |
+
self.embed_positions = BartLearnedPositionalEmbedding(
|
703 |
+
config.max_position_embeddings,
|
704 |
+
embed_dim,
|
705 |
+
)
|
706 |
+
self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)])
|
707 |
+
self.layernorm_embedding = nn.LayerNorm(embed_dim)
|
708 |
+
|
709 |
+
self.gradient_checkpointing = False
|
710 |
+
|
711 |
+
# ==================== Modification Starts ====================
|
712 |
+
# 1. params and variables
|
713 |
+
self.use_forget_gate = use_forget_gate
|
714 |
+
self.fusion_layers = fusion_layers
|
715 |
+
music_feature_dim = 256
|
716 |
+
text_feature_dim = embed_dim # 768
|
717 |
+
|
718 |
+
# 2. define attention
|
719 |
+
self._linear_1 = nn.Linear(music_feature_dim, dim_common) # K
|
720 |
+
self._linear_2 = nn.Linear(music_feature_dim, dim_common) # V
|
721 |
+
self._linear_3 = nn.Linear(text_feature_dim, dim_common) # Q
|
722 |
+
self._multi_head_attn = nn.MultiheadAttention(dim_common, n_attn_heads)
|
723 |
+
self._linear_4 = nn.Linear(text_feature_dim + dim_common, text_feature_dim) # TODO: it does not make sense
|
724 |
+
if use_forget_gate:
|
725 |
+
self.fg = nn.Linear(dim_common + text_feature_dim, dim_common)
|
726 |
+
|
727 |
+
# ==================== Modification Ends ====================
|
728 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim)
|
729 |
+
self.sigmoid = nn.Sigmoid()
|
730 |
+
|
731 |
+
# Initialize weights and apply final processing
|
732 |
+
self.post_init()
|
733 |
+
|
734 |
+
def get_input_embeddings(self):
|
735 |
+
return self.embed_tokens
|
736 |
+
|
737 |
+
def set_input_embeddings(self, value):
|
738 |
+
self.embed_tokens = value
|
739 |
+
|
740 |
+
def forward(
|
741 |
+
self,
|
742 |
+
input_ids=None,
|
743 |
+
attention_mask=None,
|
744 |
+
head_mask=None,
|
745 |
+
inputs_embeds=None,
|
746 |
+
output_attentions=None,
|
747 |
+
output_hidden_states=None,
|
748 |
+
return_dict=None,
|
749 |
+
music_features=None,
|
750 |
+
music_len=None
|
751 |
+
):
|
752 |
+
r"""
|
753 |
+
Args:
|
754 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
755 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
756 |
+
provide it.
|
757 |
+
|
758 |
+
Indices can be obtained using [`BartTokenizer`]. See
|
759 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
|
760 |
+
for details.
|
761 |
+
|
762 |
+
[What are input IDs?](../glossary#input-ids)
|
763 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
764 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
765 |
+
|
766 |
+
- 1 for tokens that are **not masked**,
|
767 |
+
- 0 for tokens that are **masked**.
|
768 |
+
|
769 |
+
[What are attention masks?](../glossary#attention-mask)
|
770 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
771 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
772 |
+
|
773 |
+
- 1 indicates the head is **not masked**,
|
774 |
+
- 0 indicates the head is **masked**.
|
775 |
+
|
776 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
777 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded
|
778 |
+
representation. This is useful if you want more control over how to convert `input_ids` indices
|
779 |
+
into associated vectors than the model's internal embedding lookup matrix.
|
780 |
+
output_attentions (`bool`, *optional*):
|
781 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
782 |
+
returned tensors for more detail.
|
783 |
+
output_hidden_states (`bool`, *optional*):
|
784 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
785 |
+
for more detail.
|
786 |
+
return_dict (`bool`, *optional*):
|
787 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
788 |
+
"""
|
789 |
+
|
790 |
+
# ==================== Modification Starts ====================
|
791 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
792 |
+
output_hidden_states = (
|
793 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
794 |
+
)
|
795 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
796 |
+
|
797 |
+
# retrieve input_ids and inputs_embeds
|
798 |
+
if input_ids is not None and inputs_embeds is not None:
|
799 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
800 |
+
elif input_ids is not None:
|
801 |
+
input_shape = input_ids.size()
|
802 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
803 |
+
elif inputs_embeds is not None:
|
804 |
+
input_shape = inputs_embeds.size()[:-1]
|
805 |
+
else:
|
806 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
807 |
+
|
808 |
+
if inputs_embeds is None:
|
809 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
810 |
+
|
811 |
+
embed_pos = self.embed_positions(input_shape)
|
812 |
+
|
813 |
+
hidden_states = inputs_embeds + embed_pos
|
814 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
815 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
816 |
+
|
817 |
+
# expand attention_mask
|
818 |
+
if attention_mask is not None:
|
819 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
820 |
+
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
|
821 |
+
|
822 |
+
encoder_states = () if output_hidden_states else None
|
823 |
+
all_attentions = () if output_attentions else None
|
824 |
+
|
825 |
+
# check if head_mask has a correct number of layers specified if desired
|
826 |
+
if head_mask is not None:
|
827 |
+
if head_mask.size()[0] != (len(self.layers)):
|
828 |
+
raise ValueError(
|
829 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
830 |
+
)
|
831 |
+
|
832 |
+
for idx, encoder_layer in enumerate(self.layers):
|
833 |
+
if output_hidden_states:
|
834 |
+
encoder_states = encoder_states + (hidden_states,)
|
835 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
836 |
+
dropout_probability = random.uniform(0, 1)
|
837 |
+
if self.training and (dropout_probability < self.layerdrop): # skip the layer
|
838 |
+
layer_outputs = (None, None)
|
839 |
+
else:
|
840 |
+
if self.gradient_checkpointing and self.training:
|
841 |
+
|
842 |
+
def create_custom_forward(module):
|
843 |
+
def custom_forward(*inputs):
|
844 |
+
return module(*inputs, output_attentions)
|
845 |
+
|
846 |
+
return custom_forward
|
847 |
+
|
848 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
849 |
+
create_custom_forward(encoder_layer),
|
850 |
+
hidden_states,
|
851 |
+
attention_mask,
|
852 |
+
(head_mask[idx] if head_mask is not None else None),
|
853 |
+
)
|
854 |
+
else:
|
855 |
+
layer_outputs = encoder_layer(
|
856 |
+
hidden_states,
|
857 |
+
attention_mask,
|
858 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
)
|
861 |
+
|
862 |
+
hidden_states = layer_outputs[0]
|
863 |
+
|
864 |
+
# ==================== music-text fusion =====================
|
865 |
+
|
866 |
+
def forget_gate(music_features, text_features):
|
867 |
+
forget_mask = self.fg(torch.cat((music_features, text_features), 2))
|
868 |
+
forget_mask = self.sigmiod(forget_mask)
|
869 |
+
forget_mask = F.dropout(forget_mask, p=self.dropout, training=self.training)
|
870 |
+
music_features = forget_mask.mul(music_features)
|
871 |
+
return music_features
|
872 |
+
|
873 |
+
if idx in self.fusion_layers:
|
874 |
+
'''
|
875 |
+
=> K_a = linear_1(V) in (S_v, D_a)
|
876 |
+
=> V_a = linear_2(V) in (S_v, D_a)
|
877 |
+
=> Q_a = linear_3(T) in (S_t, D_a)
|
878 |
+
=> T_out = MultiHeadAttn(Q_a, K_a, V_a) in (S_t, D_a)
|
879 |
+
=> T_out = linear_4(concat(T, T_out)) in (S_t, D_t)
|
880 |
+
=> T_out = T + T_out (Residual Connection)
|
881 |
+
'''
|
882 |
+
K = self._linear_1(music_features).transpose(0, 1)
|
883 |
+
V = self._linear_2(music_features).transpose(0, 1)
|
884 |
+
Q = self._linear_3(hidden_states).transpose(0, 1)
|
885 |
+
attn_output, _ = self._multi_head_attn(Q, K, V)
|
886 |
+
attn_output = attn_output.transpose(0, 1)
|
887 |
+
if self.use_forget_gate:
|
888 |
+
forget_mask = self.fg(torch.cat((attn_output, hidden_states), 2))
|
889 |
+
forget_mask = self.sigmoid(forget_mask)
|
890 |
+
forget_mask = F.dropout(forget_mask, p=self.dropout, training=self.training)
|
891 |
+
attn_output = forget_mask.mul(attn_output)
|
892 |
+
# output = self._linear_4(torch.cat((hidden_states, attn_output), 2))
|
893 |
+
|
894 |
+
# Residual Connection
|
895 |
+
hidden_states = hidden_states + 0.1 * attn_output
|
896 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
897 |
+
|
898 |
+
# ==================== music-text fusion =====================
|
899 |
+
|
900 |
+
if output_attentions:
|
901 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
902 |
+
|
903 |
+
if output_hidden_states:
|
904 |
+
encoder_states = encoder_states + (hidden_states,)
|
905 |
+
|
906 |
+
if not return_dict:
|
907 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
908 |
+
return BaseModelOutput(
|
909 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
910 |
+
)
|
911 |
+
|
912 |
+
|
913 |
+
class BartDecoder(BartPretrainedModel):
|
914 |
+
"""
|
915 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`]
|
916 |
+
|
917 |
+
Args:
|
918 |
+
config: BartConfig
|
919 |
+
embed_tokens (nn.Embedding): output embedding
|
920 |
+
"""
|
921 |
+
|
922 |
+
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
|
923 |
+
super().__init__(config)
|
924 |
+
self.dropout = config.dropout
|
925 |
+
self.layerdrop = config.decoder_layerdrop
|
926 |
+
self.padding_idx = config.pad_token_id
|
927 |
+
self.max_target_positions = config.max_position_embeddings
|
928 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
929 |
+
|
930 |
+
if embed_tokens is not None:
|
931 |
+
self.embed_tokens = embed_tokens
|
932 |
+
else:
|
933 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
934 |
+
|
935 |
+
self.embed_positions = BartLearnedPositionalEmbedding(
|
936 |
+
config.max_position_embeddings,
|
937 |
+
config.d_model,
|
938 |
+
)
|
939 |
+
self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)])
|
940 |
+
self.layernorm_embedding = nn.LayerNorm(config.d_model)
|
941 |
+
|
942 |
+
self.gradient_checkpointing = False
|
943 |
+
# Initialize weights and apply final processing
|
944 |
+
self.post_init()
|
945 |
+
|
946 |
+
def get_input_embeddings(self):
|
947 |
+
return self.embed_tokens
|
948 |
+
|
949 |
+
def set_input_embeddings(self, value):
|
950 |
+
self.embed_tokens = value
|
951 |
+
|
952 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
953 |
+
# create causal mask
|
954 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
955 |
+
combined_attention_mask = None
|
956 |
+
if input_shape[-1] > 1:
|
957 |
+
combined_attention_mask = _make_causal_mask(
|
958 |
+
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
|
959 |
+
).to(self.device)
|
960 |
+
|
961 |
+
if attention_mask is not None:
|
962 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
963 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
964 |
+
combined_attention_mask = (
|
965 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
966 |
+
)
|
967 |
+
|
968 |
+
return combined_attention_mask
|
969 |
+
|
970 |
+
def forward(
|
971 |
+
self,
|
972 |
+
input_ids=None,
|
973 |
+
attention_mask=None,
|
974 |
+
encoder_hidden_states=None,
|
975 |
+
encoder_attention_mask=None,
|
976 |
+
head_mask=None,
|
977 |
+
cross_attn_head_mask=None,
|
978 |
+
past_key_values=None,
|
979 |
+
inputs_embeds=None,
|
980 |
+
use_cache=None,
|
981 |
+
output_attentions=None,
|
982 |
+
output_hidden_states=None,
|
983 |
+
return_dict=None,
|
984 |
+
):
|
985 |
+
r"""
|
986 |
+
Args:
|
987 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
988 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
989 |
+
provide it.
|
990 |
+
|
991 |
+
Indices can be obtained using [`BartTokenizer`]. See
|
992 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
|
993 |
+
for details.
|
994 |
+
|
995 |
+
[What are input IDs?](../glossary#input-ids)
|
996 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
997 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
998 |
+
|
999 |
+
- 1 for tokens that are **not masked**,
|
1000 |
+
- 0 for tokens that are **masked**.
|
1001 |
+
|
1002 |
+
[What are attention masks?](../glossary#attention-mask)
|
1003 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
1004 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1005 |
+
of the decoder.
|
1006 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
1007 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
1008 |
+
selected in `[0, 1]`:
|
1009 |
+
|
1010 |
+
- 1 for tokens that are **not masked**,
|
1011 |
+
- 0 for tokens that are **masked**.
|
1012 |
+
|
1013 |
+
[What are attention masks?](../glossary#attention-mask)
|
1014 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1015 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1016 |
+
|
1017 |
+
- 1 indicates the head is **not masked**,
|
1018 |
+
- 0 indicates the head is **masked**.
|
1019 |
+
|
1020 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1021 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
1022 |
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
1023 |
+
|
1024 |
+
- 1 indicates the head is **not masked**,
|
1025 |
+
- 0 indicates the head is **masked**.
|
1026 |
+
|
1027 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1028 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2
|
1029 |
+
tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional
|
1030 |
+
tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1031 |
+
|
1032 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1033 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential
|
1034 |
+
decoding.
|
1035 |
+
|
1036 |
+
If `past_key_values` are used, the user can optionally input only the last
|
1037 |
+
`decoder_input_ids` (those that don't have their past key value states given to this model) of
|
1038 |
+
shape `(batch_size, 1)` instead of all ``decoder_input_ids``` of shape `(batch_size,
|
1039 |
+
sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices
|
1040 |
+
into associated vectors than the model's internal embedding lookup matrix.
|
1041 |
+
output_attentions (`bool`, *optional*):
|
1042 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1043 |
+
returned tensors for more detail.
|
1044 |
+
output_hidden_states (`bool`, *optional*):
|
1045 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1046 |
+
for more detail.
|
1047 |
+
return_dict (`bool`, *optional*):
|
1048 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
1049 |
+
"""
|
1050 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1051 |
+
output_hidden_states = (
|
1052 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1053 |
+
)
|
1054 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1055 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1056 |
+
|
1057 |
+
# retrieve input_ids and inputs_embeds
|
1058 |
+
if input_ids is not None and inputs_embeds is not None:
|
1059 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1060 |
+
elif input_ids is not None:
|
1061 |
+
input_shape = input_ids.size()
|
1062 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1063 |
+
elif inputs_embeds is not None:
|
1064 |
+
input_shape = inputs_embeds.size()[:-1]
|
1065 |
+
else:
|
1066 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1067 |
+
|
1068 |
+
# past_key_values_length
|
1069 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1070 |
+
|
1071 |
+
if inputs_embeds is None:
|
1072 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1073 |
+
|
1074 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1075 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
# expand encoder attention mask
|
1079 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1080 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1081 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
1082 |
+
|
1083 |
+
# embed positions
|
1084 |
+
positions = self.embed_positions(input_shape, past_key_values_length)
|
1085 |
+
|
1086 |
+
hidden_states = inputs_embeds + positions
|
1087 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
1088 |
+
|
1089 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1090 |
+
|
1091 |
+
# decoder layers
|
1092 |
+
all_hidden_states = () if output_hidden_states else None
|
1093 |
+
all_self_attns = () if output_attentions else None
|
1094 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
1095 |
+
next_decoder_cache = () if use_cache else None
|
1096 |
+
|
1097 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1098 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1099 |
+
if attn_mask is not None:
|
1100 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
1101 |
+
raise ValueError(
|
1102 |
+
"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1106 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1107 |
+
if output_hidden_states:
|
1108 |
+
all_hidden_states += (hidden_states,)
|
1109 |
+
dropout_probability = random.uniform(0, 1)
|
1110 |
+
if self.training and (dropout_probability < self.layerdrop):
|
1111 |
+
continue
|
1112 |
+
|
1113 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1114 |
+
|
1115 |
+
if self.gradient_checkpointing and self.training:
|
1116 |
+
|
1117 |
+
if use_cache:
|
1118 |
+
logger.warning(
|
1119 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1120 |
+
)
|
1121 |
+
use_cache = False
|
1122 |
+
|
1123 |
+
def create_custom_forward(module):
|
1124 |
+
def custom_forward(*inputs):
|
1125 |
+
# None for past_key_value
|
1126 |
+
return module(*inputs, output_attentions, use_cache)
|
1127 |
+
|
1128 |
+
return custom_forward
|
1129 |
+
|
1130 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1131 |
+
create_custom_forward(decoder_layer),
|
1132 |
+
hidden_states,
|
1133 |
+
attention_mask,
|
1134 |
+
encoder_hidden_states,
|
1135 |
+
encoder_attention_mask,
|
1136 |
+
head_mask[idx] if head_mask is not None else None,
|
1137 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1138 |
+
None,
|
1139 |
+
)
|
1140 |
+
else:
|
1141 |
+
|
1142 |
+
layer_outputs = decoder_layer(
|
1143 |
+
hidden_states,
|
1144 |
+
attention_mask=attention_mask,
|
1145 |
+
encoder_hidden_states=encoder_hidden_states,
|
1146 |
+
encoder_attention_mask=encoder_attention_mask,
|
1147 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1148 |
+
cross_attn_layer_head_mask=(
|
1149 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1150 |
+
),
|
1151 |
+
past_key_value=past_key_value,
|
1152 |
+
output_attentions=output_attentions,
|
1153 |
+
use_cache=use_cache,
|
1154 |
+
)
|
1155 |
+
hidden_states = layer_outputs[0]
|
1156 |
+
|
1157 |
+
if use_cache:
|
1158 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1159 |
+
|
1160 |
+
if output_attentions:
|
1161 |
+
all_self_attns += (layer_outputs[1],)
|
1162 |
+
|
1163 |
+
if encoder_hidden_states is not None:
|
1164 |
+
all_cross_attentions += (layer_outputs[2],)
|
1165 |
+
|
1166 |
+
# add hidden states from the last decoder layer
|
1167 |
+
if output_hidden_states:
|
1168 |
+
all_hidden_states += (hidden_states,)
|
1169 |
+
|
1170 |
+
next_cache = next_decoder_cache if use_cache else None
|
1171 |
+
if not return_dict:
|
1172 |
+
return tuple(
|
1173 |
+
v
|
1174 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1175 |
+
if v is not None
|
1176 |
+
)
|
1177 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1178 |
+
last_hidden_state=hidden_states,
|
1179 |
+
past_key_values=next_cache,
|
1180 |
+
hidden_states=all_hidden_states,
|
1181 |
+
attentions=all_self_attns,
|
1182 |
+
cross_attentions=all_cross_attentions,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
|
1186 |
+
@add_start_docstrings(
|
1187 |
+
"The bare BART Model outputting raw hidden-states without any specific head on top.",
|
1188 |
+
BART_START_DOCSTRING,
|
1189 |
+
)
|
1190 |
+
class BartModel(BartPretrainedModel):
|
1191 |
+
def __init__(self, config: BartConfig,
|
1192 |
+
fusion_layers=None,
|
1193 |
+
use_forget_gate=None,
|
1194 |
+
dim_common=256,
|
1195 |
+
n_attn_heads=1):
|
1196 |
+
super().__init__(config)
|
1197 |
+
|
1198 |
+
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
|
1199 |
+
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
|
1200 |
+
|
1201 |
+
self.encoder = BartEncoder(config, self.shared, fusion_layers, use_forget_gate, dim_common, n_attn_heads)
|
1202 |
+
self.decoder = BartDecoder(config, self.shared)
|
1203 |
+
|
1204 |
+
# Initialize weights and apply final processing
|
1205 |
+
self.post_init()
|
1206 |
+
|
1207 |
+
def get_input_embeddings(self):
|
1208 |
+
return self.shared
|
1209 |
+
|
1210 |
+
def set_input_embeddings(self, value):
|
1211 |
+
self.shared = value
|
1212 |
+
self.encoder.embed_tokens = self.shared
|
1213 |
+
self.decoder.embed_tokens = self.shared
|
1214 |
+
|
1215 |
+
def get_encoder(self):
|
1216 |
+
return self.encoder
|
1217 |
+
|
1218 |
+
def get_decoder(self):
|
1219 |
+
return self.decoder
|
1220 |
+
|
1221 |
+
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
1222 |
+
@add_code_sample_docstrings(
|
1223 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1224 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1225 |
+
output_type=Seq2SeqModelOutput,
|
1226 |
+
config_class=_CONFIG_FOR_DOC,
|
1227 |
+
)
|
1228 |
+
def forward(
|
1229 |
+
self,
|
1230 |
+
input_ids=None,
|
1231 |
+
attention_mask=None,
|
1232 |
+
decoder_input_ids=None,
|
1233 |
+
decoder_attention_mask=None,
|
1234 |
+
head_mask=None,
|
1235 |
+
decoder_head_mask=None,
|
1236 |
+
cross_attn_head_mask=None,
|
1237 |
+
encoder_outputs=None,
|
1238 |
+
past_key_values=None,
|
1239 |
+
inputs_embeds=None,
|
1240 |
+
decoder_inputs_embeds=None,
|
1241 |
+
use_cache=None,
|
1242 |
+
output_attentions=None,
|
1243 |
+
output_hidden_states=None,
|
1244 |
+
return_dict=None,
|
1245 |
+
music_features=None,
|
1246 |
+
music_len=None,
|
1247 |
+
):
|
1248 |
+
|
1249 |
+
# different to other models, Bart automatically creates decoder_input_ids from
|
1250 |
+
# input_ids if no decoder_input_ids are provided
|
1251 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1252 |
+
if input_ids is None:
|
1253 |
+
raise ValueError(
|
1254 |
+
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
|
1255 |
+
"passed, `input_ids` cannot be `None`. Please pass either "
|
1256 |
+
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
decoder_input_ids = shift_tokens_right(
|
1260 |
+
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1264 |
+
output_hidden_states = (
|
1265 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1266 |
+
)
|
1267 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1268 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1269 |
+
|
1270 |
+
if encoder_outputs is None:
|
1271 |
+
encoder_outputs = self.encoder(
|
1272 |
+
input_ids=input_ids,
|
1273 |
+
attention_mask=attention_mask,
|
1274 |
+
head_mask=head_mask,
|
1275 |
+
inputs_embeds=inputs_embeds,
|
1276 |
+
output_attentions=output_attentions,
|
1277 |
+
output_hidden_states=output_hidden_states,
|
1278 |
+
return_dict=return_dict,
|
1279 |
+
music_features=music_features,
|
1280 |
+
music_len=music_len,
|
1281 |
+
)
|
1282 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1283 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1284 |
+
encoder_outputs = BaseModelOutput(
|
1285 |
+
last_hidden_state=encoder_outputs[0],
|
1286 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1287 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1291 |
+
decoder_outputs = self.decoder(
|
1292 |
+
input_ids=decoder_input_ids,
|
1293 |
+
attention_mask=decoder_attention_mask,
|
1294 |
+
encoder_hidden_states=encoder_outputs[0],
|
1295 |
+
encoder_attention_mask=attention_mask,
|
1296 |
+
head_mask=decoder_head_mask,
|
1297 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1298 |
+
past_key_values=past_key_values,
|
1299 |
+
inputs_embeds=decoder_inputs_embeds,
|
1300 |
+
use_cache=use_cache,
|
1301 |
+
output_attentions=output_attentions,
|
1302 |
+
output_hidden_states=output_hidden_states,
|
1303 |
+
return_dict=return_dict,
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
if not return_dict:
|
1307 |
+
return decoder_outputs + encoder_outputs
|
1308 |
+
|
1309 |
+
return Seq2SeqModelOutput(
|
1310 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1311 |
+
past_key_values=decoder_outputs.past_key_values,
|
1312 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1313 |
+
decoder_attentions=decoder_outputs.attentions,
|
1314 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1315 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1316 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1317 |
+
encoder_attentions=encoder_outputs.attentions,
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
|
1321 |
+
@add_start_docstrings(
|
1322 |
+
"The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
|
1323 |
+
)
|
1324 |
+
class BartForMultimodalGeneration(BartPretrainedModel):
|
1325 |
+
base_model_prefix = "model"
|
1326 |
+
_keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]
|
1327 |
+
|
1328 |
+
def __init__(self, config: BartConfig, fusion_layers=None, use_forget_gate=None, dim_common=256, n_attn_heads=1):
|
1329 |
+
super().__init__(config)
|
1330 |
+
self.model = BartModel(config, fusion_layers, use_forget_gate, dim_common, n_attn_heads)
|
1331 |
+
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
|
1332 |
+
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
|
1333 |
+
|
1334 |
+
# Initialize weights and apply final processing
|
1335 |
+
self.post_init()
|
1336 |
+
|
1337 |
+
def get_encoder(self):
|
1338 |
+
return self.model.get_encoder()
|
1339 |
+
|
1340 |
+
def get_decoder(self):
|
1341 |
+
return self.model.get_decoder()
|
1342 |
+
|
1343 |
+
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
|
1344 |
+
new_embeddings = super().resize_token_embeddings(new_num_tokens)
|
1345 |
+
self._resize_final_logits_bias(new_num_tokens)
|
1346 |
+
return new_embeddings
|
1347 |
+
|
1348 |
+
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
|
1349 |
+
old_num_tokens = self.final_logits_bias.shape[-1]
|
1350 |
+
if new_num_tokens <= old_num_tokens:
|
1351 |
+
new_bias = self.final_logits_bias[:, :new_num_tokens]
|
1352 |
+
else:
|
1353 |
+
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
|
1354 |
+
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
|
1355 |
+
self.register_buffer("final_logits_bias", new_bias)
|
1356 |
+
|
1357 |
+
def get_output_embeddings(self):
|
1358 |
+
return self.lm_head
|
1359 |
+
|
1360 |
+
def set_output_embeddings(self, new_embeddings):
|
1361 |
+
self.lm_head = new_embeddings
|
1362 |
+
|
1363 |
+
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
|
1364 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1365 |
+
@add_end_docstrings(BART_GENERATION_EXAMPLE)
|
1366 |
+
def forward(
|
1367 |
+
self,
|
1368 |
+
input_ids=None,
|
1369 |
+
attention_mask=None,
|
1370 |
+
decoder_input_ids=None,
|
1371 |
+
decoder_attention_mask=None,
|
1372 |
+
head_mask=None,
|
1373 |
+
decoder_head_mask=None,
|
1374 |
+
cross_attn_head_mask=None,
|
1375 |
+
encoder_outputs=None,
|
1376 |
+
past_key_values=None,
|
1377 |
+
inputs_embeds=None,
|
1378 |
+
decoder_inputs_embeds=None,
|
1379 |
+
labels=None,
|
1380 |
+
use_cache=None,
|
1381 |
+
output_attentions=None,
|
1382 |
+
output_hidden_states=None,
|
1383 |
+
return_dict=None,
|
1384 |
+
music_features=None,
|
1385 |
+
music_len=None,
|
1386 |
+
):
|
1387 |
+
r"""
|
1388 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1389 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1390 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1391 |
+
|
1392 |
+
Returns:
|
1393 |
+
"""
|
1394 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1395 |
+
|
1396 |
+
if labels is not None:
|
1397 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1398 |
+
decoder_input_ids = shift_tokens_right(
|
1399 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
outputs = self.model(
|
1403 |
+
input_ids,
|
1404 |
+
attention_mask=attention_mask,
|
1405 |
+
decoder_input_ids=decoder_input_ids,
|
1406 |
+
encoder_outputs=encoder_outputs,
|
1407 |
+
decoder_attention_mask=decoder_attention_mask,
|
1408 |
+
head_mask=head_mask,
|
1409 |
+
decoder_head_mask=decoder_head_mask,
|
1410 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1411 |
+
past_key_values=past_key_values,
|
1412 |
+
inputs_embeds=inputs_embeds,
|
1413 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1414 |
+
use_cache=use_cache,
|
1415 |
+
output_attentions=output_attentions,
|
1416 |
+
output_hidden_states=output_hidden_states,
|
1417 |
+
return_dict=return_dict,
|
1418 |
+
music_features=music_features,
|
1419 |
+
music_len=music_len,
|
1420 |
+
)
|
1421 |
+
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
|
1422 |
+
|
1423 |
+
masked_lm_loss = None
|
1424 |
+
if labels is not None:
|
1425 |
+
loss_fct = CrossEntropyLoss()
|
1426 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1427 |
+
|
1428 |
+
if not return_dict:
|
1429 |
+
output = (lm_logits,) + outputs[1:]
|
1430 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1431 |
+
|
1432 |
+
return Seq2SeqLMOutput(
|
1433 |
+
loss=masked_lm_loss,
|
1434 |
+
logits=lm_logits,
|
1435 |
+
past_key_values=outputs.past_key_values,
|
1436 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1437 |
+
decoder_attentions=outputs.decoder_attentions,
|
1438 |
+
cross_attentions=outputs.cross_attentions,
|
1439 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1440 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1441 |
+
encoder_attentions=outputs.encoder_attentions,
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
def prepare_inputs_for_generation(
|
1445 |
+
self,
|
1446 |
+
decoder_input_ids,
|
1447 |
+
past=None,
|
1448 |
+
attention_mask=None,
|
1449 |
+
head_mask=None,
|
1450 |
+
decoder_head_mask=None,
|
1451 |
+
cross_attn_head_mask=None,
|
1452 |
+
use_cache=None,
|
1453 |
+
encoder_outputs=None,
|
1454 |
+
**kwargs
|
1455 |
+
):
|
1456 |
+
# cut decoder_input_ids if past is used
|
1457 |
+
if past is not None:
|
1458 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1459 |
+
|
1460 |
+
return {
|
1461 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1462 |
+
"encoder_outputs": encoder_outputs,
|
1463 |
+
"past_key_values": past,
|
1464 |
+
"decoder_input_ids": decoder_input_ids,
|
1465 |
+
"attention_mask": attention_mask,
|
1466 |
+
"head_mask": head_mask,
|
1467 |
+
"decoder_head_mask": decoder_head_mask,
|
1468 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1469 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1470 |
+
}
|
1471 |
+
|
1472 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1473 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1474 |
+
|
1475 |
+
@staticmethod
|
1476 |
+
def _reorder_cache(past, beam_idx):
|
1477 |
+
reordered_past = ()
|
1478 |
+
for layer_past in past:
|
1479 |
+
# cached cross_attention states don't have to be reordered -> they are always the same
|
1480 |
+
reordered_past += (
|
1481 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
|
1482 |
+
)
|
1483 |
+
return reordered_past
|
code/music_encoder.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torchaudio
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
|
8 |
+
from attention_modules import BertConfig, BertEncoder, BertPooler
|
9 |
+
|
10 |
+
|
11 |
+
class Conv_1d(nn.Module):
|
12 |
+
def __init__(self, input_channels, output_channels, shape=3, stride=1, pooling=2):
|
13 |
+
super(Conv_1d, self).__init__()
|
14 |
+
self.conv = nn.Conv1d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
|
15 |
+
self.bn = nn.BatchNorm1d(output_channels)
|
16 |
+
self.relu = nn.ReLU()
|
17 |
+
self.mp = nn.MaxPool1d(pooling)
|
18 |
+
def forward(self, x):
|
19 |
+
out = self.mp(self.relu(self.bn(self.conv(x))))
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
class Conv_2d(nn.Module):
|
24 |
+
def __init__(self, input_channels, output_channels, shape=3, stride=1, pooling=2):
|
25 |
+
super(Conv_2d, self).__init__()
|
26 |
+
self.conv = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
|
27 |
+
self.bn = nn.BatchNorm2d(output_channels)
|
28 |
+
self.relu = nn.ReLU()
|
29 |
+
self.mp = nn.MaxPool2d(pooling)
|
30 |
+
def forward(self, x):
|
31 |
+
out = self.mp(self.relu(self.bn(self.conv(x))))
|
32 |
+
return out
|
33 |
+
|
34 |
+
|
35 |
+
class Res_2d(nn.Module):
|
36 |
+
def __init__(self, input_channels, output_channels, shape=3, stride=2):
|
37 |
+
super(Res_2d, self).__init__()
|
38 |
+
# convolution
|
39 |
+
self.conv_1 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
|
40 |
+
self.bn_1 = nn.BatchNorm2d(output_channels)
|
41 |
+
self.conv_2 = nn.Conv2d(output_channels, output_channels, shape, padding=shape//2)
|
42 |
+
self.bn_2 = nn.BatchNorm2d(output_channels)
|
43 |
+
|
44 |
+
# residual
|
45 |
+
self.diff = False
|
46 |
+
if (stride != 1) or (input_channels != output_channels):
|
47 |
+
self.conv_3 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
|
48 |
+
self.bn_3 = nn.BatchNorm2d(output_channels)
|
49 |
+
self.diff = True
|
50 |
+
self.relu = nn.ReLU()
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
# convolution
|
54 |
+
out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x)))))
|
55 |
+
|
56 |
+
# residual
|
57 |
+
if self.diff:
|
58 |
+
x = self.bn_3(self.conv_3(x))
|
59 |
+
out = x + out
|
60 |
+
out = self.relu(out)
|
61 |
+
return out
|
62 |
+
|
63 |
+
|
64 |
+
class CNNSA(nn.Module):
|
65 |
+
'''
|
66 |
+
Won et al. 2019
|
67 |
+
Toward interpretable music tagging with self-attention.
|
68 |
+
Feature extraction with CNN + temporal summary with Transformer encoder.
|
69 |
+
'''
|
70 |
+
def __init__(self,
|
71 |
+
n_channels=128,
|
72 |
+
sample_rate=16000,
|
73 |
+
n_fft=512,
|
74 |
+
f_min=0.0,
|
75 |
+
f_max=8000.0,
|
76 |
+
n_mels=128,
|
77 |
+
n_class=50):
|
78 |
+
super(CNNSA, self).__init__()
|
79 |
+
|
80 |
+
# Spectrogram
|
81 |
+
self.spec = torchaudio.transforms.MelSpectrogram(sample_rate=sample_rate,
|
82 |
+
n_fft=n_fft,
|
83 |
+
f_min=f_min,
|
84 |
+
f_max=f_max,
|
85 |
+
n_mels=n_mels)
|
86 |
+
self.to_db = torchaudio.transforms.AmplitudeToDB()
|
87 |
+
self.spec_bn = nn.BatchNorm2d(1)
|
88 |
+
|
89 |
+
# CNN
|
90 |
+
self.layer1 = Res_2d(1, n_channels, stride=2)
|
91 |
+
self.layer2 = Res_2d(n_channels, n_channels, stride=2)
|
92 |
+
self.layer3 = Res_2d(n_channels, n_channels*2, stride=2)
|
93 |
+
self.layer4 = Res_2d(n_channels*2, n_channels*2, stride=(2, 1))
|
94 |
+
self.layer5 = Res_2d(n_channels*2, n_channels*2, stride=(2, 1))
|
95 |
+
self.layer6 = Res_2d(n_channels*2, n_channels*2, stride=(2, 1))
|
96 |
+
self.layer7 = Res_2d(n_channels*2, n_channels*2, stride=(2, 1))
|
97 |
+
|
98 |
+
# Transformer encoder
|
99 |
+
bert_config = BertConfig(vocab_size=256,
|
100 |
+
hidden_size=256,
|
101 |
+
num_hidden_layers=2,
|
102 |
+
num_attention_heads=8,
|
103 |
+
intermediate_size=1024,
|
104 |
+
hidden_act="gelu",
|
105 |
+
hidden_dropout_prob=0.4,
|
106 |
+
max_position_embeddings=700,
|
107 |
+
attention_probs_dropout_prob=0.5)
|
108 |
+
self.encoder = BertEncoder(bert_config)
|
109 |
+
self.pooler = BertPooler(bert_config)
|
110 |
+
self.vec_cls = self.get_cls(256)
|
111 |
+
|
112 |
+
# Dense
|
113 |
+
self.dropout = nn.Dropout(0.5)
|
114 |
+
self.dense = nn.Linear(256, n_class)
|
115 |
+
|
116 |
+
def get_cls(self, channel):
|
117 |
+
np.random.seed(0)
|
118 |
+
single_cls = torch.Tensor(np.random.random((1, channel)))
|
119 |
+
vec_cls = torch.cat([single_cls for _ in range(64)], dim=0)
|
120 |
+
vec_cls = vec_cls.unsqueeze(1)
|
121 |
+
return vec_cls
|
122 |
+
|
123 |
+
def append_cls(self, x):
|
124 |
+
batch, _, _ = x.size()
|
125 |
+
part_vec_cls = self.vec_cls[:batch].clone()
|
126 |
+
part_vec_cls = part_vec_cls.to(x.device)
|
127 |
+
return torch.cat([part_vec_cls, x], dim=1)
|
128 |
+
|
129 |
+
def get_spec(self, ids, audio_length=15*16000, allow_random=False):
|
130 |
+
|
131 |
+
wav_list = list()
|
132 |
+
|
133 |
+
for id in ids:
|
134 |
+
audio_path = os.path.join("/import/c4dm-datasets/Music4All/music4all/audios", id + '.mp3')
|
135 |
+
(wav, sample_rate) = torchaudio.backend.sox_io_backend.load(audio_path)
|
136 |
+
|
137 |
+
# to mono
|
138 |
+
mono_wav = torch.mean(wav, dim=0)
|
139 |
+
|
140 |
+
# cut length
|
141 |
+
if allow_random:
|
142 |
+
random_index = random.randint(0, len(mono_wav) - audio_length - 1)
|
143 |
+
else:
|
144 |
+
random_index = 0
|
145 |
+
mono_wav_cut = mono_wav[random_index: random_index + audio_length]
|
146 |
+
|
147 |
+
wav_list.append(mono_wav_cut)
|
148 |
+
|
149 |
+
# merge wav to (bs, length)
|
150 |
+
data = torch.stack(wav_list, dim=0)
|
151 |
+
|
152 |
+
# to spectrogram
|
153 |
+
spectrogram = self.spec(data.cuda())
|
154 |
+
|
155 |
+
return spectrogram
|
156 |
+
|
157 |
+
def forward(self, ids):
|
158 |
+
# Spectrogram
|
159 |
+
# for batch
|
160 |
+
spec = self.get_spec(ids)
|
161 |
+
spec_db = self.to_db(spec)
|
162 |
+
x = spec_db.unsqueeze(1) # add channel dim
|
163 |
+
x = self.spec_bn(x)
|
164 |
+
|
165 |
+
# CNN
|
166 |
+
x = self.layer1(x)
|
167 |
+
x = self.layer2(x)
|
168 |
+
x = self.layer3(x)
|
169 |
+
x = self.layer4(x)
|
170 |
+
x = self.layer5(x)
|
171 |
+
x = self.layer6(x)
|
172 |
+
x = self.layer7(x)
|
173 |
+
x = x.squeeze(2)
|
174 |
+
|
175 |
+
# Get [CLS] token
|
176 |
+
x = x.permute(0, 2, 1)
|
177 |
+
x = self.append_cls(x)
|
178 |
+
|
179 |
+
# Transformer encoder
|
180 |
+
x = self.encoder(x)
|
181 |
+
x = x[-1] # last layer
|
182 |
+
# x = self.pooler(x)
|
183 |
+
#
|
184 |
+
# # Dense
|
185 |
+
# x = self.dropout(x)
|
186 |
+
# x = self.dense(x)
|
187 |
+
# x = nn.Sigmoid()(x)
|
188 |
+
|
189 |
+
return x # return the last layer. Shape: (length, 256)
|
190 |
+
|
191 |
+
|
192 |
+
# test code
|
193 |
+
# model = CNNSA()
|
194 |
+
# model.load_state_dict(torch.load("best_model.pth"))
|
195 |
+
# id = ["wlIcjSZkgW0cgWrm", "wlIcjSZkgW0cgWrm"]
|
196 |
+
# output = model(id)
|
code/train.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
from data import LyricsCommentsDatasetPsuedo
|
4 |
+
from torch import utils, nn
|
5 |
+
from model import CommentGenerator
|
6 |
+
import transformers
|
7 |
+
import time
|
8 |
+
import statistics
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
IS_LOAD = False
|
14 |
+
LOAD_EPOCH = 0
|
15 |
+
EPOCH = 20
|
16 |
+
BATCH_SIZE = 8
|
17 |
+
LOG_INTERVAL = 100
|
18 |
+
SAMPLE_INTERVAL = 2000
|
19 |
+
VALIDATION_INTERVAL = 2
|
20 |
+
LOG_FOLDER = "log/"
|
21 |
+
MODEL_FOLDER = "model/"
|
22 |
+
EARLY_STOPPING_INTERVAL = 5
|
23 |
+
MODEL_NAME = "bart_baseline_full_256"
|
24 |
+
CHOICE_NUMBER = 5
|
25 |
+
DATASET_PATH = "dataset_not_negative_256.pkl"
|
26 |
+
|
27 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
|
28 |
+
|
29 |
+
dataset = LyricsCommentsDatasetPsuedo(dataset_path=DATASET_PATH)
|
30 |
+
dataset_length = len(dataset)
|
31 |
+
|
32 |
+
train_dataset_length = int(dataset_length * 0.9)
|
33 |
+
valid_dataset_length = dataset_length - train_dataset_length
|
34 |
+
train_dataset, valid_dataset = utils.data.random_split(dataset,
|
35 |
+
[train_dataset_length,
|
36 |
+
valid_dataset_length],
|
37 |
+
generator=torch.Generator().manual_seed(42))
|
38 |
+
train_dataloader = utils.data.DataLoader(train_dataset,
|
39 |
+
batch_size=BATCH_SIZE,
|
40 |
+
shuffle=True)
|
41 |
+
valid_dataloader = utils.data.DataLoader(valid_dataset,
|
42 |
+
batch_size=32,
|
43 |
+
shuffle=False)
|
44 |
+
|
45 |
+
model = CommentGenerator().cuda()
|
46 |
+
|
47 |
+
criterion = nn.CrossEntropyLoss()
|
48 |
+
|
49 |
+
optimizer = transformers.Adafactor(model.parameters(), warmup_init=False, relative_step=False,
|
50 |
+
lr=6e-4,
|
51 |
+
)
|
52 |
+
|
53 |
+
loss_stat = list()
|
54 |
+
start_time = time.time()
|
55 |
+
start_time_local = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
|
56 |
+
|
57 |
+
early_stop_token = (0.0, 0)
|
58 |
+
|
59 |
+
model.train()
|
60 |
+
for epoch in range(1 + LOAD_EPOCH, EPOCH + 1 + LOAD_EPOCH):
|
61 |
+
for batch_index, [lyrics, comment] in enumerate(train_dataloader):
|
62 |
+
# pre-process data
|
63 |
+
input_sentences = lyrics
|
64 |
+
raw_labels = comment
|
65 |
+
output = model(input_sentences, raw_labels)
|
66 |
+
loss = output.loss
|
67 |
+
|
68 |
+
optimizer.zero_grad()
|
69 |
+
loss.backward()
|
70 |
+
optimizer.step()
|
71 |
+
loss_stat.append(loss.item())
|
72 |
+
|
73 |
+
# log
|
74 |
+
if batch_index and batch_index % LOG_INTERVAL == 0:
|
75 |
+
curr_time = time.time()
|
76 |
+
passed_time_all = curr_time - start_time
|
77 |
+
time_str = f"{int(passed_time_all / 60)}:{int(passed_time_all % 60)}"
|
78 |
+
log = f"{MODEL_NAME}\t" \
|
79 |
+
f"Time: {time_str}\t" \
|
80 |
+
f"Epoch {epoch}: {batch_index}/{int(len(train_dataloader.dataset) / BATCH_SIZE)}\t" \
|
81 |
+
f"Loss: {statistics.mean(loss_stat[-1 * BATCH_SIZE:])}\t" \
|
82 |
+
f"Avg loss: {statistics.mean(loss_stat)}"
|
83 |
+
if __debug__:
|
84 |
+
print(log)
|
85 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + "_" + start_time_local + ".txt"), 'a+', encoding='utf-8') as r:
|
86 |
+
r.write(log)
|
87 |
+
r.write("\n")
|
88 |
+
loss_stat = list()
|
89 |
+
|
90 |
+
if batch_index and batch_index % SAMPLE_INTERVAL == 0:
|
91 |
+
|
92 |
+
model.eval()
|
93 |
+
samples_list = random.choices(valid_dataset, k=CHOICE_NUMBER)
|
94 |
+
sample_sentence, sample_label = zip(*samples_list)
|
95 |
+
output_samples = model.generate(sample_sentence)
|
96 |
+
for sample_index in range(CHOICE_NUMBER):
|
97 |
+
log = f"Lyrics: {sample_sentence[sample_index]}\n" \
|
98 |
+
f"Sample outputs: {output_samples[sample_index]}\n" \
|
99 |
+
f"Ground Truth: {sample_label[sample_index]}"
|
100 |
+
if __debug__:
|
101 |
+
print(log)
|
102 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + "_" + start_time_local + ".txt"), 'a+', encoding='utf-8') as r:
|
103 |
+
r.write(log)
|
104 |
+
r.write("\n")
|
105 |
+
model.train()
|
106 |
+
|
107 |
+
if epoch and epoch % VALIDATION_INTERVAL == 0:
|
108 |
+
model.eval()
|
109 |
+
metrics = datasets.load_metric('rouge')
|
110 |
+
valid_dataloader = utils.data.DataLoader(valid_dataset,
|
111 |
+
batch_size=32,
|
112 |
+
shuffle=False)
|
113 |
+
for batch_index_valid, [lyrics_valid, comment_valid] in enumerate(valid_dataloader):
|
114 |
+
output_samples = model.generate(lyrics_valid)
|
115 |
+
metrics.add_batch(predictions=output_samples, references=comment_valid)
|
116 |
+
|
117 |
+
# control time.
|
118 |
+
if batch_index_valid > 10:
|
119 |
+
break
|
120 |
+
score = metrics.compute()
|
121 |
+
if __debug__:
|
122 |
+
print(str(score))
|
123 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + '_' + start_time_local + ".txt"), 'a+',
|
124 |
+
encoding='utf-8') as r:
|
125 |
+
r.write(str(score))
|
126 |
+
r.write("\n")
|
127 |
+
|
128 |
+
# save
|
129 |
+
if score['rouge1'].mid.recall > early_stop_token[0]:
|
130 |
+
early_stop_token = [score['rouge1'].mid.recall, epoch] # replace to the best
|
131 |
+
torch.save(model.state_dict(), os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_best.pt"))
|
132 |
+
torch.save(optimizer.state_dict(),
|
133 |
+
os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_optim_best.pt"))
|
134 |
+
|
135 |
+
if epoch:
|
136 |
+
torch.save(model.state_dict(), os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_epoch{epoch}.pt"))
|
137 |
+
torch.save(optimizer.state_dict(),
|
138 |
+
os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_optim_epoch{epoch}.pt"))
|
139 |
+
|
140 |
+
# early stopping
|
141 |
+
if score['rouge1'].mid.recall <= early_stop_token[0] and epoch > (
|
142 |
+
early_stop_token[1] + EARLY_STOPPING_INTERVAL):
|
143 |
+
print(f"Early Stopping. Best Score: {early_stop_token[0]} at Epoch {early_stop_token[1]}.")
|
144 |
+
|
145 |
+
model.train()
|
code/train_fusion.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
from data import LyricsCommentsDatasetPsuedo_fusion
|
4 |
+
from torch import utils, nn
|
5 |
+
from model_fusion import CommentGenerator_fusion
|
6 |
+
import transformers
|
7 |
+
import time
|
8 |
+
import statistics
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
IS_LOAD = False
|
14 |
+
LOAD_EPOCH = 0
|
15 |
+
EPOCH = 50
|
16 |
+
BATCH_SIZE = 8
|
17 |
+
LOG_INTERVAL = 100
|
18 |
+
SAMPLE_INTERVAL = 1000
|
19 |
+
VALIDATION_INTERVAL = 2
|
20 |
+
LOG_FOLDER = "log/"
|
21 |
+
MODEL_FOLDER = "model/"
|
22 |
+
SAVE_INTERVAL = 2
|
23 |
+
EARLY_STOPPING_INTERVAL = 5
|
24 |
+
MODEL_NAME = "bart_fusion_full_256"
|
25 |
+
CHOICE_NUMBER = 2
|
26 |
+
DATASET_PATH = "/homes/yz007/multimodal-transformer/comment_generator/dataset_full_256.pkl"
|
27 |
+
|
28 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
|
29 |
+
|
30 |
+
dataset = LyricsCommentsDatasetPsuedo_fusion(dataset_path=DATASET_PATH)
|
31 |
+
dataset_length = len(dataset)
|
32 |
+
|
33 |
+
train_dataset_length = int(dataset_length * 0.9)
|
34 |
+
valid_dataset_length = dataset_length - train_dataset_length
|
35 |
+
train_dataset, valid_dataset = utils.data.random_split(dataset,
|
36 |
+
[train_dataset_length,
|
37 |
+
valid_dataset_length],
|
38 |
+
generator=torch.Generator().manual_seed(42))
|
39 |
+
train_dataloader = utils.data.DataLoader(train_dataset,
|
40 |
+
batch_size=BATCH_SIZE,
|
41 |
+
shuffle=True)
|
42 |
+
# valid_dataloader = utils.data.DataLoader(valid_dataset,
|
43 |
+
# batch_size=32,
|
44 |
+
# shuffle=False)
|
45 |
+
|
46 |
+
model = CommentGenerator_fusion().cuda()
|
47 |
+
|
48 |
+
criterion = nn.CrossEntropyLoss()
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
# optimizer = transformers.Adafactor(filter(lambda p: p.requires_grad, model.parameters()),
|
53 |
+
# lr=6e-4,
|
54 |
+
# )
|
55 |
+
optimizer = transformers.Adafactor(model.parameters(), warmup_init=False, relative_step=False,
|
56 |
+
lr=6e-4,
|
57 |
+
)
|
58 |
+
|
59 |
+
if IS_LOAD:
|
60 |
+
model.load_state_dict(torch.load("/homes/yz007/multimodal-transformer/comment_generator/model/bart_fusion_positive_256_6e-4_epoch6.pt"))
|
61 |
+
optimizer.load_state_dict(torch.load("/homes/yz007/multimodal-transformer/comment_generator/model/bart_fusion_positive_256_6e-4_optim_epoch6.pt"))
|
62 |
+
|
63 |
+
loss_stat = list()
|
64 |
+
start_time = time.time()
|
65 |
+
start_time_local = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
|
66 |
+
|
67 |
+
early_stop_token = [0.0, 0]
|
68 |
+
validation_loss_history = list()
|
69 |
+
|
70 |
+
model.train()
|
71 |
+
for epoch in range(1 + LOAD_EPOCH, EPOCH + 1 + LOAD_EPOCH):
|
72 |
+
for batch_index, [lyrics, comment, music_id] in enumerate(train_dataloader):
|
73 |
+
# pre-process data
|
74 |
+
input_sentences = lyrics
|
75 |
+
raw_labels = comment
|
76 |
+
output = model(input_sentences, music_id, raw_labels)
|
77 |
+
loss = output.loss
|
78 |
+
|
79 |
+
optimizer.zero_grad()
|
80 |
+
loss.backward()
|
81 |
+
optimizer.step()
|
82 |
+
loss_stat.append(loss.item())
|
83 |
+
|
84 |
+
# log
|
85 |
+
if batch_index and batch_index % LOG_INTERVAL == 0:
|
86 |
+
curr_time = time.time()
|
87 |
+
passed_time_all = curr_time - start_time
|
88 |
+
time_str = f"{int(passed_time_all / 60)}:{int(passed_time_all % 60)}"
|
89 |
+
log = f"{MODEL_NAME}\t" \
|
90 |
+
f"Time: {time_str}\t" \
|
91 |
+
f"Epoch {epoch}: {batch_index}/{int(len(train_dataloader.dataset) / BATCH_SIZE)}\t" \
|
92 |
+
f"Loss: {statistics.mean(loss_stat[-1 * LOG_INTERVAL * BATCH_SIZE:])}\t" \
|
93 |
+
f"Avg loss: {statistics.mean(loss_stat)}"
|
94 |
+
if __debug__:
|
95 |
+
print(log)
|
96 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + '_' + start_time_local + ".txt"), 'a+',
|
97 |
+
encoding='utf-8') as r:
|
98 |
+
r.write(log)
|
99 |
+
r.write("\n")
|
100 |
+
loss_stat = list()
|
101 |
+
|
102 |
+
if batch_index and batch_index % SAMPLE_INTERVAL == 0:
|
103 |
+
# make samples
|
104 |
+
model.eval()
|
105 |
+
samples_list = random.choices(valid_dataset, k=CHOICE_NUMBER)
|
106 |
+
sample_sentence, sample_label, music_ids = zip(*samples_list)
|
107 |
+
with torch.no_grad():
|
108 |
+
output_samples = model.generate(sample_sentence, music_ids)
|
109 |
+
for sample_index in range(CHOICE_NUMBER):
|
110 |
+
log = f"Lyrics: {sample_sentence[sample_index]}\n" \
|
111 |
+
f"Sample outputs: {output_samples[sample_index]}\n" \
|
112 |
+
f"Ground Truth: {sample_label[sample_index]}"
|
113 |
+
if __debug__:
|
114 |
+
print(log)
|
115 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + '_' + start_time_local + ".txt"), 'a+',
|
116 |
+
encoding='utf-8') as r:
|
117 |
+
r.write(log)
|
118 |
+
r.write("\n")
|
119 |
+
|
120 |
+
# validation loss
|
121 |
+
valid_dataloader = utils.data.DataLoader(valid_dataset,
|
122 |
+
batch_size=8,
|
123 |
+
shuffle=False)
|
124 |
+
valid_loss_stat = list()
|
125 |
+
for batch_index_valid, [lyrics_valid, comment_valid, music_id_valid] in enumerate(valid_dataloader):
|
126 |
+
with torch.no_grad():
|
127 |
+
output_valid = model(lyrics_valid, music_id_valid, comment_valid)
|
128 |
+
valid_loss = output_valid.loss.item()
|
129 |
+
valid_loss_stat.append(valid_loss)
|
130 |
+
if batch_index_valid > 15:
|
131 |
+
break
|
132 |
+
valid_loss_mean = statistics.mean(valid_loss_stat)
|
133 |
+
validation_loss_history.append(valid_loss_mean)
|
134 |
+
log = f"{MODEL_NAME}\t" \
|
135 |
+
f"Time: {time_str}\t" \
|
136 |
+
f"Epoch {epoch}: {batch_index}/{int(len(train_dataloader.dataset) / BATCH_SIZE)}\t" \
|
137 |
+
f"Validation Loss: {valid_loss_mean}\t"
|
138 |
+
if __debug__:
|
139 |
+
print(log)
|
140 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + '_' + start_time_local + ".txt"), 'a+',
|
141 |
+
encoding='utf-8') as r:
|
142 |
+
r.write(log)
|
143 |
+
r.write("\n")
|
144 |
+
|
145 |
+
# back to train
|
146 |
+
model.train()
|
147 |
+
|
148 |
+
if epoch and epoch % VALIDATION_INTERVAL == 0:
|
149 |
+
model.eval()
|
150 |
+
metrics = datasets.load_metric('rouge')
|
151 |
+
valid_dataloader = utils.data.DataLoader(valid_dataset,
|
152 |
+
batch_size=8,
|
153 |
+
shuffle=False)
|
154 |
+
for batch_index_valid, [lyrics_valid, comment_valid, music_id_valid] in enumerate(valid_dataloader):
|
155 |
+
with torch.no_grad():
|
156 |
+
output_samples = model.generate(lyrics_valid, music_id_valid)
|
157 |
+
metrics.add_batch(predictions=output_samples, references=comment_valid)
|
158 |
+
# control time.
|
159 |
+
if batch_index_valid > 10:
|
160 |
+
break
|
161 |
+
score = metrics.compute()
|
162 |
+
if __debug__:
|
163 |
+
print(str(score))
|
164 |
+
with open(os.path.join(LOG_FOLDER, MODEL_NAME + '_' + start_time_local + ".txt"), 'a+',
|
165 |
+
encoding='utf-8') as r:
|
166 |
+
r.write(str(score))
|
167 |
+
r.write("\n")
|
168 |
+
|
169 |
+
# save
|
170 |
+
if score['rouge1'].mid.recall > early_stop_token[0]:
|
171 |
+
early_stop_token = [score['rouge1'].mid.recall, epoch] # replace to the best
|
172 |
+
torch.save(model.state_dict(), os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_best.pt"))
|
173 |
+
torch.save(optimizer.state_dict(),
|
174 |
+
os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_optim_best.pt"))
|
175 |
+
|
176 |
+
# save
|
177 |
+
if epoch and epoch % SAVE_INTERVAL == 0:
|
178 |
+
torch.save(model.state_dict(), os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_epoch{epoch}.pt"))
|
179 |
+
torch.save(optimizer.state_dict(),
|
180 |
+
os.path.join(MODEL_FOLDER, f"{MODEL_NAME}_optim_epoch{epoch}.pt"))
|
181 |
+
|
182 |
+
# early stopping
|
183 |
+
if len(validation_loss_history) > EARLY_STOPPING_INTERVAL:
|
184 |
+
if min(validation_loss_history[-2 * EARLY_STOPPING_INTERVAL:]) == validation_loss_history[-2 * EARLY_STOPPING_INTERVAL]:
|
185 |
+
print(f"Early Stopping. Best Score: {early_stop_token[0]} at Epoch {early_stop_token[1]}.")
|
186 |
+
break
|
187 |
+
if score['rouge1'].mid.recall <= early_stop_token[0] and epoch > (
|
188 |
+
early_stop_token[1] + EARLY_STOPPING_INTERVAL):
|
189 |
+
print(f"Early Stopping. Best Score: {early_stop_token[0]} at Epoch {early_stop_token[1]}.")
|
190 |
+
break
|
191 |
+
model.train()
|
192 |
+
|
193 |
+
print(f"Training Complete. Best Score: {early_stop_token[0]} at Epoch {early_stop_token[1]}.")
|