Commit
·
36bdb9e
1
Parent(s):
23e4e25
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.21 +/- 0.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cddd1db35cb0ba05f0fde7b490d060ebc697b1527030f54a7c42fca62f97ef7f
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f179e29f430>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f179e295d80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675854438092353052,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQRTgPn8VbbwKtiA/QRTgPn8VbbwKtiA/QRTgPn8VbbwKtiA/QRTgPn8VbbwKtiA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq6ORPssJ2L/G46Q/IizQPtsw0z9Spv2+Z+/4PG2jt7+U6Dq+QFHMP0R5Lb+SN7c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbtBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbtBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbtBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.43765453 -0.01447046 0.6277777 ]\n [ 0.43765453 -0.01447046 0.6277777 ]\n [ 0.43765453 -0.01447046 0.6277777 ]\n [ 0.43765453 -0.01447046 0.6277777 ]]",
|
60 |
+
"desired_goal": "[[ 0.2844518 -1.6877989 1.2882011 ]\n [ 0.4065867 1.6499285 -0.49540955]\n [ 0.03038759 -1.4346749 -0.18252784]\n [ 1.5962296 -0.6776316 1.4313834 ]]",
|
61 |
+
"observation": "[[ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]\n [ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]\n [ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]\n [ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeC/nPdSSaz2ABv89ZchkPTLAC70eNjc+7buivZDH9j21RHw+FtX/PeOWu703ul4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.11288351 0.05751307 0.12452412]\n [ 0.05585517 -0.03411884 0.17891738]\n [-0.07946 0.12049782 0.24635585]\n [ 0.12491815 -0.09159639 0.21750723]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZRniWBc34r+UhpRSlIwBbJRLMowBdJRHQKh3MWGATZh1fZQoaAZoCWgPQwjJPsiyYGL5v5SGlFKUaBVLMmgWR0Codtki2UjcdX2UKGgGaAloD0MIfV2G/3RD/b+UhpRSlGgVSzJoFkdAqHaEi8nNPnV9lChoBmgJaA9DCH7FGi5yT/K/lIaUUpRoFUsyaBZHQKh2LTCLuQZ1fZQoaAZoCWgPQwg4aK8+Hnrwv5SGlFKUaBVLMmgWR0CoeGCX6ZYxdX2UKGgGaAloD0MI5WA2AYal+7+UhpRSlGgVSzJoFkdAqHgIuZkTYnV9lChoBmgJaA9DCJGdt7HZkQHAlIaUUpRoFUsyaBZHQKh3tCUHIIZ1fZQoaAZoCWgPQwiR71LqkjH+v5SGlFKUaBVLMmgWR0Cod1xgqmTDdX2UKGgGaAloD0MIRPzDlh5N8L+UhpRSlGgVSzJoFkdAqHmc1TBInXV9lChoBmgJaA9DCCcyc4HLo/G/lIaUUpRoFUsyaBZHQKh5RHy3CsR1fZQoaAZoCWgPQwg/HCRE+eIIwJSGlFKUaBVLMmgWR0CoePCV0Lc9dX2UKGgGaAloD0MIAHFXryIj67+UhpRSlGgVSzJoFkdAqHiZW7voeXV9lChoBmgJaA9DCBXI7Cx6Z/i/lIaUUpRoFUsyaBZHQKh60+FlCkZ1fZQoaAZoCWgPQwipwp/hzVr6v5SGlFKUaBVLMmgWR0CoenuHWSU1dX2UKGgGaAloD0MIh8Woa+298b+UhpRSlGgVSzJoFkdAqHontKIznHV9lChoBmgJaA9DCGMNF7mn6wHAlIaUUpRoFUsyaBZHQKh5z9DQZ4x1fZQoaAZoCWgPQwjo24KlumAGwJSGlFKUaBVLMmgWR0Coe+kytV7ydX2UKGgGaAloD0MIbAcj9gkg8b+UhpRSlGgVSzJoFkdAqHuRCa7Va3V9lChoBmgJaA9DCLd6TnrfOAHAlIaUUpRoFUsyaBZHQKh7PHuJDVp1fZQoaAZoCWgPQwhqpKXydkT0v5SGlFKUaBVLMmgWR0CoeuSAH3UQdX2UKGgGaAloD0MIx7sjY7U5+7+UhpRSlGgVSzJoFkdAqH0FZJTVD3V9lChoBmgJaA9DCGiSWFLu3gTAlIaUUpRoFUsyaBZHQKh8rRm9QGh1fZQoaAZoCWgPQwi3lzRG6yjjv5SGlFKUaBVLMmgWR0CofFiC8OCodX2UKGgGaAloD0MIOSUgJuFC9r+UhpRSlGgVSzJoFkdAqHwAnndO7HV9lChoBmgJaA9DCN/98V61suq/lIaUUpRoFUsyaBZHQKh+GnRb8m91fZQoaAZoCWgPQwi6gm3Ekx3wv5SGlFKUaBVLMmgWR0CofcIV/MGHdX2UKGgGaAloD0MIa9eEtMagAcCUhpRSlGgVSzJoFkdAqH1tfZ26kXV9lChoBmgJaA9DCEWduYeE7+e/lIaUUpRoFUsyaBZHQKh9FXzUZvV1fZQoaAZoCWgPQwi/C1uzlVf9v5SGlFKUaBVLMmgWR0CofyifYjB3dX2UKGgGaAloD0MIvJAOD2H837+UhpRSlGgVSzJoFkdAqH7QetCAtnV9lChoBmgJaA9DCDsA4q5eRf2/lIaUUpRoFUsyaBZHQKh+e/C66J91fZQoaAZoCWgPQwj3WztREvIBwJSGlFKUaBVLMmgWR0CofiQDmr80dX2UKGgGaAloD0MItd0E3zT9/b+UhpRSlGgVSzJoFkdAqIA8WdmQKnV9lChoBmgJaA9DCHDpmPOM/f+/lIaUUpRoFUsyaBZHQKh/47tiQT51fZQoaAZoCWgPQwjKayV0l0T7v5SGlFKUaBVLMmgWR0Cof49FfAsTdX2UKGgGaAloD0MICft2EhG+8L+UhpRSlGgVSzJoFkdAqH83PE87p3V9lChoBmgJaA9DCBa/KaxUUOi/lIaUUpRoFUsyaBZHQKiBYQAdXDF1fZQoaAZoCWgPQwh+qZ83Fen9v5SGlFKUaBVLMmgWR0CogQj1GsmwdX2UKGgGaAloD0MIjfFh9rLt8r+UhpRSlGgVSzJoFkdAqIC0aS9ug3V9lChoBmgJaA9DCGqIKvwZ3vS/lIaUUpRoFUsyaBZHQKiAXI2fkFR1fZQoaAZoCWgPQwg3xk54CY72v5SGlFKUaBVLMmgWR0CogmBBzFMqdX2UKGgGaAloD0MIxCedSDBV7b+UhpRSlGgVSzJoFkdAqIIH7gsK9nV9lChoBmgJaA9DCAX7r3PTpvK/lIaUUpRoFUsyaBZHQKiBs2606YF1fZQoaAZoCWgPQwhpHVVNEHXnv5SGlFKUaBVLMmgWR0CogVtuk1uSdX2UKGgGaAloD0MIdjI4Sl4d9L+UhpRSlGgVSzJoFkdAqIN0e2d/a3V9lChoBmgJaA9DCPrS25+LBum/lIaUUpRoFUsyaBZHQKiDHCk43m51fZQoaAZoCWgPQwhPBHEeTmDuv5SGlFKUaBVLMmgWR0CogseYlY2bdX2UKGgGaAloD0MIqFX0h2ae3L+UhpRSlGgVSzJoFkdAqIJvkzXSSnV9lChoBmgJaA9DCJkoQup29vK/lIaUUpRoFUsyaBZHQKiEhUWl/H51fZQoaAZoCWgPQwhCI9i4/p38v5SGlFKUaBVLMmgWR0CohCz0pVjqdX2UKGgGaAloD0MIf6SIDKu49r+UhpRSlGgVSzJoFkdAqIPYYrJ8v3V9lChoBmgJaA9DCOUK73IRn/a/lIaUUpRoFUsyaBZHQKiDgCbtqpN1fZQoaAZoCWgPQwj1vvG1Zxbuv5SGlFKUaBVLMmgWR0CohYN9QXQ/dX2UKGgGaAloD0MI5bM8D+7O87+UhpRSlGgVSzJoFkdAqIUrJhfBvnV9lChoBmgJaA9DCNUI/Uy9bu6/lIaUUpRoFUsyaBZHQKiE1ooNNJx1fZQoaAZoCWgPQwhodt1bkZjwv5SGlFKUaBVLMmgWR0CohH5OBUaRdX2UKGgGaAloD0MIzQLtDikG7L+UhpRSlGgVSzJoFkdAqIajGNrCWXV9lChoBmgJaA9DCIlFDDuMife/lIaUUpRoFUsyaBZHQKiGSqrilzl1fZQoaAZoCWgPQwgOhc/WwUH4v5SGlFKUaBVLMmgWR0CohfYgRsdldX2UKGgGaAloD0MIn5PeN762/L+UhpRSlGgVSzJoFkdAqIWeMIeHSHV9lChoBmgJaA9DCGL3HcNjP+e/lIaUUpRoFUsyaBZHQKiH0Tq0MPV1fZQoaAZoCWgPQwjiOVtAaD3tv5SGlFKUaBVLMmgWR0Coh3nvlU6xdX2UKGgGaAloD0MIeqUsQxxr8r+UhpRSlGgVSzJoFkdAqIcl4JNTLnV9lChoBmgJaA9DCBhA+FCiZfy/lIaUUpRoFUsyaBZHQKiGzjYI0Il1fZQoaAZoCWgPQwgyzAna5HDyv5SGlFKUaBVLMmgWR0CoiO9CeEqUdX2UKGgGaAloD0MIJAwDllzF9b+UhpRSlGgVSzJoFkdAqIiXD3ueBnV9lChoBmgJaA9DCBlW8UbmEfK/lIaUUpRoFUsyaBZHQKiIQn9ehPF1fZQoaAZoCWgPQwjrAIi7etX5v5SGlFKUaBVLMmgWR0Coh+qCHymRdX2UKGgGaAloD0MIGjVfJR87+b+UhpRSlGgVSzJoFkdAqIpo+nqFAXV9lChoBmgJaA9DCP2fw3x5gfy/lIaUUpRoFUsyaBZHQKiKEYLsrup1fZQoaAZoCWgPQwhtq1lnfB/0v5SGlFKUaBVLMmgWR0Coib3fyf+TdX2UKGgGaAloD0MIhEpcx7ji5r+UhpRSlGgVSzJoFkdAqIlmmk30gHV9lChoBmgJaA9DCG1xjc9k//K/lIaUUpRoFUsyaBZHQKiMSHiWE9N1fZQoaAZoCWgPQwi+amXCL3Xhv5SGlFKUaBVLMmgWR0Coi/ESElE7dX2UKGgGaAloD0MIWWsotRfR/r+UhpRSlGgVSzJoFkdAqIudbLU1AXV9lChoBmgJaA9DCAA8okJ1M/G/lIaUUpRoFUsyaBZHQKiLRmgam411fZQoaAZoCWgPQwiG5c+3BUv1v5SGlFKUaBVLMmgWR0CojlirT6SDdX2UKGgGaAloD0MIcHmsGRlk7r+UhpRSlGgVSzJoFkdAqI4BUgjhUHV9lChoBmgJaA9DCE5BfjZyvQDAlIaUUpRoFUsyaBZHQKiNra2WpqB1fZQoaAZoCWgPQwi1h71QwHb7v5SGlFKUaBVLMmgWR0CojVbPhQ3xdX2UKGgGaAloD0MIz9vY7Eh18r+UhpRSlGgVSzJoFkdAqJBGBjFyaXV9lChoBmgJaA9DCBjQC3cuTPm/lIaUUpRoFUsyaBZHQKiP7uc+aBt1fZQoaAZoCWgPQwj2KFyPwvXrv5SGlFKUaBVLMmgWR0Coj50D2alUdX2UKGgGaAloD0MIhlj9EYYB8r+UhpRSlGgVSzJoFkdAqI9FvCMxXXV9lChoBmgJaA9DCDZZox6i0fC/lIaUUpRoFUsyaBZHQKiSnjPv8ZV1fZQoaAZoCWgPQwjBq+XOTLD1v5SGlFKUaBVLMmgWR0Cokkb2Dg62dX2UKGgGaAloD0MIl8eakUFu8b+UhpRSlGgVSzJoFkdAqJH1fJFLFnV9lChoBmgJaA9DCATHZdzUgPW/lIaUUpRoFUsyaBZHQKiRnoQFs551fZQoaAZoCWgPQwgIWRZM/BHwv5SGlFKUaBVLMmgWR0ColQ+qioKldX2UKGgGaAloD0MI88zLYffd9L+UhpRSlGgVSzJoFkdAqJS4M8YAKnV9lChoBmgJaA9DCIzWUdUEEfi/lIaUUpRoFUsyaBZHQKiUZEsrd311fZQoaAZoCWgPQwgBMQkX8kj2v5SGlFKUaBVLMmgWR0ColA4g7o0RdX2UKGgGaAloD0MIx/MZUG9G4L+UhpRSlGgVSzJoFkdAqJbSXpnpS3V9lChoBmgJaA9DCBU5RNycyue/lIaUUpRoFUsyaBZHQKiWeuPFNtZ1fZQoaAZoCWgPQwh80okEU030v5SGlFKUaBVLMmgWR0Colicer+5wdX2UKGgGaAloD0MI2uVbH9ab4r+UhpRSlGgVSzJoFkdAqJXQH1OCXnV9lChoBmgJaA9DCIHptG6DWvW/lIaUUpRoFUsyaBZHQKiY33cpLEl1fZQoaAZoCWgPQwiLijidZKvkv5SGlFKUaBVLMmgWR0ComIfCAMDwdX2UKGgGaAloD0MIu5unOuRm8r+UhpRSlGgVSzJoFkdAqJgz7TDwY3V9lChoBmgJaA9DCAsOL4hITfi/lIaUUpRoFUsyaBZHQKiX3csUZel1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:127add7e70eca2167883dfc33ded7395c7520abbcf5b638fc9219f5a274f3577
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e1a9342f3909dd8ba57ab75384ede09bea1c626314e4934b5d2ac141ebc75c6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f179e29f430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f179e295d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675854438092353052, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQRTgPn8VbbwKtiA/QRTgPn8VbbwKtiA/QRTgPn8VbbwKtiA/QRTgPn8VbbwKtiA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq6ORPssJ2L/G46Q/IizQPtsw0z9Spv2+Z+/4PG2jt7+U6Dq+QFHMP0R5Lb+SN7c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbtBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbtBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbtBFOA+fxVtvAq2ID9Zt8e7pW0Tu9FBhbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43765453 -0.01447046 0.6277777 ]\n [ 0.43765453 -0.01447046 0.6277777 ]\n [ 0.43765453 -0.01447046 0.6277777 ]\n [ 0.43765453 -0.01447046 0.6277777 ]]", "desired_goal": "[[ 0.2844518 -1.6877989 1.2882011 ]\n [ 0.4065867 1.6499285 -0.49540955]\n [ 0.03038759 -1.4346749 -0.18252784]\n [ 1.5962296 -0.6776316 1.4313834 ]]", "observation": "[[ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]\n [ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]\n [ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]\n [ 0.43765453 -0.01447046 0.6277777 -0.00609485 -0.00224958 -0.00406668]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeC/nPdSSaz2ABv89ZchkPTLAC70eNjc+7buivZDH9j21RHw+FtX/PeOWu703ul4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11288351 0.05751307 0.12452412]\n [ 0.05585517 -0.03411884 0.17891738]\n [-0.07946 0.12049782 0.24635585]\n [ 0.12491815 -0.09159639 0.21750723]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZRniWBc34r+UhpRSlIwBbJRLMowBdJRHQKh3MWGATZh1fZQoaAZoCWgPQwjJPsiyYGL5v5SGlFKUaBVLMmgWR0Codtki2UjcdX2UKGgGaAloD0MIfV2G/3RD/b+UhpRSlGgVSzJoFkdAqHaEi8nNPnV9lChoBmgJaA9DCH7FGi5yT/K/lIaUUpRoFUsyaBZHQKh2LTCLuQZ1fZQoaAZoCWgPQwg4aK8+Hnrwv5SGlFKUaBVLMmgWR0CoeGCX6ZYxdX2UKGgGaAloD0MI5WA2AYal+7+UhpRSlGgVSzJoFkdAqHgIuZkTYnV9lChoBmgJaA9DCJGdt7HZkQHAlIaUUpRoFUsyaBZHQKh3tCUHIIZ1fZQoaAZoCWgPQwiR71LqkjH+v5SGlFKUaBVLMmgWR0Cod1xgqmTDdX2UKGgGaAloD0MIRPzDlh5N8L+UhpRSlGgVSzJoFkdAqHmc1TBInXV9lChoBmgJaA9DCCcyc4HLo/G/lIaUUpRoFUsyaBZHQKh5RHy3CsR1fZQoaAZoCWgPQwg/HCRE+eIIwJSGlFKUaBVLMmgWR0CoePCV0Lc9dX2UKGgGaAloD0MIAHFXryIj67+UhpRSlGgVSzJoFkdAqHiZW7voeXV9lChoBmgJaA9DCBXI7Cx6Z/i/lIaUUpRoFUsyaBZHQKh60+FlCkZ1fZQoaAZoCWgPQwipwp/hzVr6v5SGlFKUaBVLMmgWR0CoenuHWSU1dX2UKGgGaAloD0MIh8Woa+298b+UhpRSlGgVSzJoFkdAqHontKIznHV9lChoBmgJaA9DCGMNF7mn6wHAlIaUUpRoFUsyaBZHQKh5z9DQZ4x1fZQoaAZoCWgPQwjo24KlumAGwJSGlFKUaBVLMmgWR0Coe+kytV7ydX2UKGgGaAloD0MIbAcj9gkg8b+UhpRSlGgVSzJoFkdAqHuRCa7Va3V9lChoBmgJaA9DCLd6TnrfOAHAlIaUUpRoFUsyaBZHQKh7PHuJDVp1fZQoaAZoCWgPQwhqpKXydkT0v5SGlFKUaBVLMmgWR0CoeuSAH3UQdX2UKGgGaAloD0MIx7sjY7U5+7+UhpRSlGgVSzJoFkdAqH0FZJTVD3V9lChoBmgJaA9DCGiSWFLu3gTAlIaUUpRoFUsyaBZHQKh8rRm9QGh1fZQoaAZoCWgPQwi3lzRG6yjjv5SGlFKUaBVLMmgWR0CofFiC8OCodX2UKGgGaAloD0MIOSUgJuFC9r+UhpRSlGgVSzJoFkdAqHwAnndO7HV9lChoBmgJaA9DCN/98V61suq/lIaUUpRoFUsyaBZHQKh+GnRb8m91fZQoaAZoCWgPQwi6gm3Ekx3wv5SGlFKUaBVLMmgWR0CofcIV/MGHdX2UKGgGaAloD0MIa9eEtMagAcCUhpRSlGgVSzJoFkdAqH1tfZ26kXV9lChoBmgJaA9DCEWduYeE7+e/lIaUUpRoFUsyaBZHQKh9FXzUZvV1fZQoaAZoCWgPQwi/C1uzlVf9v5SGlFKUaBVLMmgWR0CofyifYjB3dX2UKGgGaAloD0MIvJAOD2H837+UhpRSlGgVSzJoFkdAqH7QetCAtnV9lChoBmgJaA9DCDsA4q5eRf2/lIaUUpRoFUsyaBZHQKh+e/C66J91fZQoaAZoCWgPQwj3WztREvIBwJSGlFKUaBVLMmgWR0CofiQDmr80dX2UKGgGaAloD0MItd0E3zT9/b+UhpRSlGgVSzJoFkdAqIA8WdmQKnV9lChoBmgJaA9DCHDpmPOM/f+/lIaUUpRoFUsyaBZHQKh/47tiQT51fZQoaAZoCWgPQwjKayV0l0T7v5SGlFKUaBVLMmgWR0Cof49FfAsTdX2UKGgGaAloD0MICft2EhG+8L+UhpRSlGgVSzJoFkdAqH83PE87p3V9lChoBmgJaA9DCBa/KaxUUOi/lIaUUpRoFUsyaBZHQKiBYQAdXDF1fZQoaAZoCWgPQwh+qZ83Fen9v5SGlFKUaBVLMmgWR0CogQj1GsmwdX2UKGgGaAloD0MIjfFh9rLt8r+UhpRSlGgVSzJoFkdAqIC0aS9ug3V9lChoBmgJaA9DCGqIKvwZ3vS/lIaUUpRoFUsyaBZHQKiAXI2fkFR1fZQoaAZoCWgPQwg3xk54CY72v5SGlFKUaBVLMmgWR0CogmBBzFMqdX2UKGgGaAloD0MIxCedSDBV7b+UhpRSlGgVSzJoFkdAqIIH7gsK9nV9lChoBmgJaA9DCAX7r3PTpvK/lIaUUpRoFUsyaBZHQKiBs2606YF1fZQoaAZoCWgPQwhpHVVNEHXnv5SGlFKUaBVLMmgWR0CogVtuk1uSdX2UKGgGaAloD0MIdjI4Sl4d9L+UhpRSlGgVSzJoFkdAqIN0e2d/a3V9lChoBmgJaA9DCPrS25+LBum/lIaUUpRoFUsyaBZHQKiDHCk43m51fZQoaAZoCWgPQwhPBHEeTmDuv5SGlFKUaBVLMmgWR0CogseYlY2bdX2UKGgGaAloD0MIqFX0h2ae3L+UhpRSlGgVSzJoFkdAqIJvkzXSSnV9lChoBmgJaA9DCJkoQup29vK/lIaUUpRoFUsyaBZHQKiEhUWl/H51fZQoaAZoCWgPQwhCI9i4/p38v5SGlFKUaBVLMmgWR0CohCz0pVjqdX2UKGgGaAloD0MIf6SIDKu49r+UhpRSlGgVSzJoFkdAqIPYYrJ8v3V9lChoBmgJaA9DCOUK73IRn/a/lIaUUpRoFUsyaBZHQKiDgCbtqpN1fZQoaAZoCWgPQwj1vvG1Zxbuv5SGlFKUaBVLMmgWR0CohYN9QXQ/dX2UKGgGaAloD0MI5bM8D+7O87+UhpRSlGgVSzJoFkdAqIUrJhfBvnV9lChoBmgJaA9DCNUI/Uy9bu6/lIaUUpRoFUsyaBZHQKiE1ooNNJx1fZQoaAZoCWgPQwhodt1bkZjwv5SGlFKUaBVLMmgWR0CohH5OBUaRdX2UKGgGaAloD0MIzQLtDikG7L+UhpRSlGgVSzJoFkdAqIajGNrCWXV9lChoBmgJaA9DCIlFDDuMife/lIaUUpRoFUsyaBZHQKiGSqrilzl1fZQoaAZoCWgPQwgOhc/WwUH4v5SGlFKUaBVLMmgWR0CohfYgRsdldX2UKGgGaAloD0MIn5PeN762/L+UhpRSlGgVSzJoFkdAqIWeMIeHSHV9lChoBmgJaA9DCGL3HcNjP+e/lIaUUpRoFUsyaBZHQKiH0Tq0MPV1fZQoaAZoCWgPQwjiOVtAaD3tv5SGlFKUaBVLMmgWR0Coh3nvlU6xdX2UKGgGaAloD0MIeqUsQxxr8r+UhpRSlGgVSzJoFkdAqIcl4JNTLnV9lChoBmgJaA9DCBhA+FCiZfy/lIaUUpRoFUsyaBZHQKiGzjYI0Il1fZQoaAZoCWgPQwgyzAna5HDyv5SGlFKUaBVLMmgWR0CoiO9CeEqUdX2UKGgGaAloD0MIJAwDllzF9b+UhpRSlGgVSzJoFkdAqIiXD3ueBnV9lChoBmgJaA9DCBlW8UbmEfK/lIaUUpRoFUsyaBZHQKiIQn9ehPF1fZQoaAZoCWgPQwjrAIi7etX5v5SGlFKUaBVLMmgWR0Coh+qCHymRdX2UKGgGaAloD0MIGjVfJR87+b+UhpRSlGgVSzJoFkdAqIpo+nqFAXV9lChoBmgJaA9DCP2fw3x5gfy/lIaUUpRoFUsyaBZHQKiKEYLsrup1fZQoaAZoCWgPQwhtq1lnfB/0v5SGlFKUaBVLMmgWR0Coib3fyf+TdX2UKGgGaAloD0MIhEpcx7ji5r+UhpRSlGgVSzJoFkdAqIlmmk30gHV9lChoBmgJaA9DCG1xjc9k//K/lIaUUpRoFUsyaBZHQKiMSHiWE9N1fZQoaAZoCWgPQwi+amXCL3Xhv5SGlFKUaBVLMmgWR0Coi/ESElE7dX2UKGgGaAloD0MIWWsotRfR/r+UhpRSlGgVSzJoFkdAqIudbLU1AXV9lChoBmgJaA9DCAA8okJ1M/G/lIaUUpRoFUsyaBZHQKiLRmgam411fZQoaAZoCWgPQwiG5c+3BUv1v5SGlFKUaBVLMmgWR0CojlirT6SDdX2UKGgGaAloD0MIcHmsGRlk7r+UhpRSlGgVSzJoFkdAqI4BUgjhUHV9lChoBmgJaA9DCE5BfjZyvQDAlIaUUpRoFUsyaBZHQKiNra2WpqB1fZQoaAZoCWgPQwi1h71QwHb7v5SGlFKUaBVLMmgWR0CojVbPhQ3xdX2UKGgGaAloD0MIz9vY7Eh18r+UhpRSlGgVSzJoFkdAqJBGBjFyaXV9lChoBmgJaA9DCBjQC3cuTPm/lIaUUpRoFUsyaBZHQKiP7uc+aBt1fZQoaAZoCWgPQwj2KFyPwvXrv5SGlFKUaBVLMmgWR0Coj50D2alUdX2UKGgGaAloD0MIhlj9EYYB8r+UhpRSlGgVSzJoFkdAqI9FvCMxXXV9lChoBmgJaA9DCDZZox6i0fC/lIaUUpRoFUsyaBZHQKiSnjPv8ZV1fZQoaAZoCWgPQwjBq+XOTLD1v5SGlFKUaBVLMmgWR0Cokkb2Dg62dX2UKGgGaAloD0MIl8eakUFu8b+UhpRSlGgVSzJoFkdAqJH1fJFLFnV9lChoBmgJaA9DCATHZdzUgPW/lIaUUpRoFUsyaBZHQKiRnoQFs551fZQoaAZoCWgPQwgIWRZM/BHwv5SGlFKUaBVLMmgWR0ColQ+qioKldX2UKGgGaAloD0MI88zLYffd9L+UhpRSlGgVSzJoFkdAqJS4M8YAKnV9lChoBmgJaA9DCIzWUdUEEfi/lIaUUpRoFUsyaBZHQKiUZEsrd311fZQoaAZoCWgPQwgBMQkX8kj2v5SGlFKUaBVLMmgWR0ColA4g7o0RdX2UKGgGaAloD0MIx/MZUG9G4L+UhpRSlGgVSzJoFkdAqJbSXpnpS3V9lChoBmgJaA9DCBU5RNycyue/lIaUUpRoFUsyaBZHQKiWeuPFNtZ1fZQoaAZoCWgPQwh80okEU030v5SGlFKUaBVLMmgWR0Colicer+5wdX2UKGgGaAloD0MI2uVbH9ab4r+UhpRSlGgVSzJoFkdAqJXQH1OCXnV9lChoBmgJaA9DCIHptG6DWvW/lIaUUpRoFUsyaBZHQKiY33cpLEl1fZQoaAZoCWgPQwiLijidZKvkv5SGlFKUaBVLMmgWR0ComIfCAMDwdX2UKGgGaAloD0MIu5unOuRm8r+UhpRSlGgVSzJoFkdAqJgz7TDwY3V9lChoBmgJaA9DCAsOL4hITfi/lIaUUpRoFUsyaBZHQKiX3csUZel1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (336 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.2127408186905086, "std_reward": 0.3296127793123205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T11:59:51.470924"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c57ffe955695e0f3f0b309a103afe112bffe21c03dc8ff7b664b62c5d298b8b
|
3 |
+
size 3056
|