update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- jxner
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: medicine-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: jxner
|
20 |
+
type: jxner
|
21 |
+
config: wnut_17
|
22 |
+
split: test
|
23 |
+
args: wnut_17
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.0
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.0
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.0
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# medicine-ner
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the jxner dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.5562
|
47 |
+
- Precision: 0.0
|
48 |
+
- Recall: 0.0
|
49 |
+
- F1: 0.0
|
50 |
+
- Accuracy: 0.9
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 16
|
71 |
+
- eval_batch_size: 16
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 20
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 1 | 1.7398 | 0.0370 | 0.125 | 0.0571 | 0.65 |
|
82 |
+
| No log | 2.0 | 2 | 1.5750 | 0.0 | 0.0 | 0.0 | 0.86 |
|
83 |
+
| No log | 3.0 | 3 | 1.4146 | 0.0 | 0.0 | 0.0 | 0.88 |
|
84 |
+
| No log | 4.0 | 4 | 1.2611 | 0.0 | 0.0 | 0.0 | 0.9 |
|
85 |
+
| No log | 5.0 | 5 | 1.1173 | 0.0 | 0.0 | 0.0 | 0.9 |
|
86 |
+
| No log | 6.0 | 6 | 0.9869 | 0.0 | 0.0 | 0.0 | 0.9 |
|
87 |
+
| No log | 7.0 | 7 | 0.8737 | 0.0 | 0.0 | 0.0 | 0.9 |
|
88 |
+
| No log | 8.0 | 8 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.9 |
|
89 |
+
| No log | 9.0 | 9 | 0.7074 | 0.0 | 0.0 | 0.0 | 0.9 |
|
90 |
+
| No log | 10.0 | 10 | 0.6545 | 0.0 | 0.0 | 0.0 | 0.9 |
|
91 |
+
| No log | 11.0 | 11 | 0.6181 | 0.0 | 0.0 | 0.0 | 0.9 |
|
92 |
+
| No log | 12.0 | 12 | 0.5938 | 0.0 | 0.0 | 0.0 | 0.9 |
|
93 |
+
| No log | 13.0 | 13 | 0.5780 | 0.0 | 0.0 | 0.0 | 0.9 |
|
94 |
+
| No log | 14.0 | 14 | 0.5682 | 0.0 | 0.0 | 0.0 | 0.9 |
|
95 |
+
| No log | 15.0 | 15 | 0.5623 | 0.0 | 0.0 | 0.0 | 0.9 |
|
96 |
+
| No log | 16.0 | 16 | 0.5589 | 0.0 | 0.0 | 0.0 | 0.9 |
|
97 |
+
| No log | 17.0 | 17 | 0.5571 | 0.0 | 0.0 | 0.0 | 0.9 |
|
98 |
+
| No log | 18.0 | 18 | 0.5563 | 0.0 | 0.0 | 0.0 | 0.9 |
|
99 |
+
| No log | 19.0 | 19 | 0.5562 | 0.0 | 0.0 | 0.0 | 0.9 |
|
100 |
+
| No log | 20.0 | 20 | 0.5562 | 0.0 | 0.0 | 0.0 | 0.9 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.27.3
|
106 |
+
- Pytorch 1.13.1+cu116
|
107 |
+
- Datasets 2.10.1
|
108 |
+
- Tokenizers 0.13.2
|