File size: 2,667 Bytes
08547af
 
 
 
 
 
 
 
 
 
9bd5b03
08547af
 
d859638
 
e69a6ee
791c19e
08547af
 
0b4cc63
e69a6ee
0b4cc63
08547af
0b4cc63
08547af
0975702
08547af
0b4cc63
 
08547af
7f301db
08547af
0b4cc63
 
 
 
08547af
0b4cc63
 
 
 
 
 
08547af
0b4cc63
 
 
08547af
0b4cc63
 
 
 
 
 
 
 
 
d859638
0b4cc63
7f301db
 
 
7f92a02
 
 
 
 
 
 
 
 
 
 
 
 
 
7f301db
0b4cc63
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
base_model: stabilityai/stable-diffusion-xl-base-1.0
license: cc-by-nc-nd-4.0
---
# ⚡ Flash Diffusion: FlashSDXL ⚡


Flash Diffusion is a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin.*
This model is a **108M** LoRA distilled version of [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) model that is able to generate images in **4 steps**. The main purpose of this model is to reproduce the main results of the paper.
See our [live demo](https://huggingface.co/spaces/jasperai/FlashPixart) and official [Github repo](https://github.com/gojasper/flash-diffusion).


<p align="center">
   <img style="width:700px;" src="images/flash_sdxl.jpg">
</p>

# How to use?

The model can be used using the `DiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **4 steps**.

```python
from diffusers import DiffusionPipeline, LCMScheduler

adapter_id = "jasperai/flash-sdxl"

pipe = DiffusionPipeline.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  use_safetensors=True,
)

pipe.scheduler = LCMScheduler.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  subfolder="scheduler",
  timestep_spacing="trailing",
)
pipe.to("cuda")

# Fuse and load LoRA weights
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()

prompt = "A raccoon reading a book in a lush forest."

image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
<p align="center">
   <img style="width:400px;" src="images/raccoon.png">
</p>

# Training Details
The model was trained for 20k iterations on 4 H100 GPUs (representing approximately a total of 176 GPU hours of training). Please refer to the [paper](http://arxiv.org/abs/2406.02347) for further parameters details. 

**Metrics on COCO 2014 validation (Table 3)**
  - FID-10k: 21.62 (4 NFE)
  - CLIP Score: 0.327 (4 NFE)

## Citation
If you find this work useful or use it in your research, please consider citing us

```bibtex
@misc{chadebec2024flash,
      title={Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation}, 
      author={Clement Chadebec and Onur Tasar and Eyal Benaroche and Benjamin Aubin},
      year={2024},
      eprint={2406.02347},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
   
## License
This model is released under the the Creative Commons BY-NC license.