javiervela commited on
Commit
253fce3
·
1 Parent(s): 285a39d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.07 +/- 0.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90ba3baa9b4fcd3c24728343439d60b1ac7321398c028d3ac4e3eb7aa08f054
3
+ size 108025
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbe312bd8b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fbe312c0180>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 192780,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675858942599552287,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcVuHvxTYn7/6mCE9VyKCP+8syj8f4Wq/YUqGP7xfBj8Ymr4/1SZYv4CDEb+2qxK/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0cumv/f9tr+mrJu93C/DP94W3T/KW2K/0JjYPxOp8D5sHNs/M+N5vzjiB78KrV2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxW4e/FNifv/qYIT3Jmfi/1eVRvyIs679XIoI/7yzKPx/har+s7zI+Zc1vPSh4FD9hSoY/vF8GPxiavj+gF6y8T2yEvbBPtj/VJli/gIMRv7arEr8i/wi/XdeUP7/qrb+UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[-1.0574781 -1.2487817 0.03945253]\n [ 1.016673 1.5794963 -0.9174976 ]\n [ 1.0491449 0.5248983 1.4890776 ]\n [-0.8443425 -0.5684128 -0.5729326 ]]",
60
+ "desired_goal": "[[-1.303095 -1.4296254 -0.07601289]\n [ 1.524898 1.7272604 -0.8842131 ]\n [ 1.6921635 0.47003993 1.7118049 ]\n [-0.97612303 -0.5307956 -0.8659216 ]]",
61
+ "observation": "[[-1.0574781 -1.2487817 0.03945253 -1.9421932 -0.8199132 -1.8372843 ]\n [ 1.016673 1.5794963 -0.9174976 0.1747424 0.05854549 0.57995844]\n [ 1.0491449 0.5248983 1.4890776 -0.02100736 -0.06465971 1.4243069 ]\n [-0.8443425 -0.5684128 -0.5729326 -0.535143 1.1628224 -1.3587264 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVXcPvf6uc71idEc+sonwvXyNfz0ZGxw+BbW1vcXt/b1ZDvk9wKrHPR9J8T3T+oU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.03502591 -0.05949306 0.1947799 ]\n [-0.11745013 0.06239079 0.15244712]\n [-0.08872417 -0.12398867 0.1216094 ]\n [ 0.09749365 0.11781525 0.26167926]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.80722,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOWHCaFY2+r+UhpRSlIwBbJRLMowBdJRHQIIeTlDF6zF1fZQoaAZoCWgPQwi5ADRKl772v5SGlFKUaBVLMmgWR0CCHUmmce8xdX2UKGgGaAloD0MI/S0B+KcU97+UhpRSlGgVSzJoFkdAghxHNX5nDnV9lChoBmgJaA9DCJAty9dlOPm/lIaUUpRoFUsyaBZHQIIbSfpUxVR1fZQoaAZoCWgPQwiemssNhjr3v5SGlFKUaBVLMmgWR0CCIkjesPrfdX2UKGgGaAloD0MIw5ygTQ6f/L+UhpRSlGgVSzJoFkdAgiFFTWGyonV9lChoBmgJaA9DCKp9Oh4z0PW/lIaUUpRoFUsyaBZHQIIgRLGrCFd1fZQoaAZoCWgPQwjy7shYbX73v5SGlFKUaBVLMmgWR0CCH0c2BJ7LdX2UKGgGaAloD0MIFqWEYFU99r+UhpRSlGgVSzJoFkdAgiZvJzT4L3V9lChoBmgJaA9DCLcIjPUNjPe/lIaUUpRoFUsyaBZHQIIlajesPrh1fZQoaAZoCWgPQwj0p43qdOD1v5SGlFKUaBVLMmgWR0CCJGkdmxt6dX2UKGgGaAloD0MIprT+lgB8+r+UhpRSlGgVSzJoFkdAgiNrxI8QqnV9lChoBmgJaA9DCKDf929eHPG/lIaUUpRoFUsyaBZHQIIqgSxqwhZ1fZQoaAZoCWgPQwgbmx2pvjP4v5SGlFKUaBVLMmgWR0CCKXxdY4hmdX2UKGgGaAloD0MII9dNKa+V8r+UhpRSlGgVSzJoFkdAgih5n13+uXV9lChoBmgJaA9DCGub4nFRrfm/lIaUUpRoFUsyaBZHQIInfLNfPX11fZQoaAZoCWgPQwjbwvNSsXHyv5SGlFKUaBVLMmgWR0CCLpu5z5oHdX2UKGgGaAloD0MIb2WJzjJL9r+UhpRSlGgVSzJoFkdAgi2XfZVXFXV9lChoBmgJaA9DCLwhjQqcbPS/lIaUUpRoFUsyaBZHQIIslXA/LTx1fZQoaAZoCWgPQwhQ4J18eqzyv5SGlFKUaBVLMmgWR0CCK5hP0qYrdX2UKGgGaAloD0MIZjGx+bj2+L+UhpRSlGgVSzJoFkdAgjLQ+t8uz3V9lChoBmgJaA9DCN3temmKAPq/lIaUUpRoFUsyaBZHQIIxzH6uW8h1fZQoaAZoCWgPQwhWKxN+qV/2v5SGlFKUaBVLMmgWR0CCMMt4A0bcdX2UKGgGaAloD0MINe7Nb5ho9L+UhpRSlGgVSzJoFkdAgi/PYODraHV9lChoBmgJaA9DCMbeiy/ao/W/lIaUUpRoFUsyaBZHQII26Hj6vaF1fZQoaAZoCWgPQwhA+iZNg2L3v5SGlFKUaBVLMmgWR0CCNeQTVUdadX2UKGgGaAloD0MI7BLVWwMb9b+UhpRSlGgVSzJoFkdAgjTioCMglnV9lChoBmgJaA9DCBqGj4gpEfW/lIaUUpRoFUsyaBZHQIIz5gXuVop1fZQoaAZoCWgPQwjy7zMuHIjzv5SGlFKUaBVLMmgWR0CCOxYoy9EkdX2UKGgGaAloD0MIOxvyzwyi9L+UhpRSlGgVSzJoFkdAgjoSYG+sYHV9lChoBmgJaA9DCKExk6gXfPS/lIaUUpRoFUsyaBZHQII5EIJJGvx1fZQoaAZoCWgPQwhq3nGKjqT2v5SGlFKUaBVLMmgWR0CCOBYsd1dPdX2UKGgGaAloD0MIZeHra10q87+UhpRSlGgVSzJoFkdAgj8JHI6sAHV9lChoBmgJaA9DCHmsGRnk7ve/lIaUUpRoFUsyaBZHQII+BNj9XLh1fZQoaAZoCWgPQwjyzwziA/v3v5SGlFKUaBVLMmgWR0CCPQMDOkckdX2UKGgGaAloD0MIWmQ730+N+r+UhpRSlGgVSzJoFkdAgjwH8jzI3nV9lChoBmgJaA9DCMql8Quv5Pa/lIaUUpRoFUsyaBZHQIJDLcGkep51fZQoaAZoCWgPQwii8Nk6ONj4v5SGlFKUaBVLMmgWR0CCQim51/2CdX2UKGgGaAloD0MI/n4xW7Kq9b+UhpRSlGgVSzJoFkdAgkEnZK3/gnV9lChoBmgJaA9DCOOItfgUQPa/lIaUUpRoFUsyaBZHQIJAKvV3EAJ1fZQoaAZoCWgPQwh88UV7vFDxv5SGlFKUaBVLMmgWR0CCRyjopx3ndX2UKGgGaAloD0MIjNzT1R2L9b+UhpRSlGgVSzJoFkdAgkYj59E1EXV9lChoBmgJaA9DCEqyDkdX6fG/lIaUUpRoFUsyaBZHQIJFIbdadMF1fZQoaAZoCWgPQwj8cJAQ5cv2v5SGlFKUaBVLMmgWR0CCRCRPGhmHdX2UKGgGaAloD0MIYTdsW5TZ97+UhpRSlGgVSzJoFkdAgkt+1SflIXV9lChoBmgJaA9DCB9N9WT+Efe/lIaUUpRoFUsyaBZHQIJKevOhTOx1fZQoaAZoCWgPQwgxt3u5T47zv5SGlFKUaBVLMmgWR0CCSXiobXHzdX2UKGgGaAloD0MIGESkpl3M9r+UhpRSlGgVSzJoFkdAgkh8S5AhS3V9lChoBmgJaA9DCEvpmV5iLPm/lIaUUpRoFUsyaBZHQIJPpgG8mKJ1fZQoaAZoCWgPQwhb0lEOZlP1v5SGlFKUaBVLMmgWR0CCTqF6AvtddX2UKGgGaAloD0MIAwmKH2Ou9b+UhpRSlGgVSzJoFkdAgk2e8PFvRHV9lChoBmgJaA9DCPEpAMYz6Pe/lIaUUpRoFUsyaBZHQIJMopDu0C11fZQoaAZoCWgPQwg5mbhVEAP7v5SGlFKUaBVLMmgWR0CCU672+PBBdX2UKGgGaAloD0MIixpMw/BR9b+UhpRSlGgVSzJoFkdAglKrsKLKm3V9lChoBmgJaA9DCJXTnpJzYvu/lIaUUpRoFUsyaBZHQIJRqROk+HJ1fZQoaAZoCWgPQwiWBRN/FPX1v5SGlFKUaBVLMmgWR0CCUKuFHrhSdX2UKGgGaAloD0MI9kNssHCS9L+UhpRSlGgVSzJoFkdAgljjx0+1SnV9lChoBmgJaA9DCF3g8lgz8vi/lIaUUpRoFUsyaBZHQIJX4ydnTRZ1fZQoaAZoCWgPQwg+WwcHe1P7v5SGlFKUaBVLMmgWR0CCVuNZNfw7dX2UKGgGaAloD0MILA/SU+QQ+L+UhpRSlGgVSzJoFkdAglXonKGL1nV9lChoBmgJaA9DCMZP4978hvS/lIaUUpRoFUsyaBZHQIJfsl7dBSl1fZQoaAZoCWgPQwiFJokl5a7/v5SGlFKUaBVLMmgWR0CCXrFvQ4S6dX2UKGgGaAloD0MIOKRRgZNt+b+UhpRSlGgVSzJoFkdAgl20KRdQf3V9lChoBmgJaA9DCKjlB67yBPi/lIaUUpRoFUsyaBZHQIJcuQQtjCp1fZQoaAZoCWgPQwgRN6eSAeDxv5SGlFKUaBVLMmgWR0CCZhfdhy80dX2UKGgGaAloD0MIjUY+r3jq9r+UhpRSlGgVSzJoFkdAgmUV7x/d7HV9lChoBmgJaA9DCPnaM0sCVPW/lIaUUpRoFUsyaBZHQIJkGI68xsV1fZQoaAZoCWgPQwi9qN2vAjz4v5SGlFKUaBVLMmgWR0CCYyCI1tO3dX2UKGgGaAloD0MIj2/vGvTl97+UhpRSlGgVSzJoFkdAgm0KWkadc3V9lChoBmgJaA9DCKRVLekox/W/lIaUUpRoFUsyaBZHQIJsCdat9x91fZQoaAZoCWgPQwhZiuQrgRTzv5SGlFKUaBVLMmgWR0CCaw3c580DdX2UKGgGaAloD0MISMSUSKIX/b+UhpRSlGgVSzJoFkdAgmoVUEPlMnV9lChoBmgJaA9DCFzK+WLvhfS/lIaUUpRoFUsyaBZHQIJ0GqvNeMR1fZQoaAZoCWgPQwhHAg02dR72v5SGlFKUaBVLMmgWR0CCcxgogFHKdX2UKGgGaAloD0MISDZXzXNE87+UhpRSlGgVSzJoFkdAgnIZCWu5jHV9lChoBmgJaA9DCLQ7pBggkfS/lIaUUpRoFUsyaBZHQIJxHezlcQl1fZQoaAZoCWgPQwi1ozhHHd30v5SGlFKUaBVLMmgWR0CCf/BqsU7CdX2UKGgGaAloD0MIwopTrYXZ9L+UhpRSlGgVSzJoFkdAgn7vJq7AcnV9lChoBmgJaA9DCMUdb/JbtPO/lIaUUpRoFUsyaBZHQIJ98k8ifQN1fZQoaAZoCWgPQwjqIoWy8PX4v5SGlFKUaBVLMmgWR0CCfPjIaLn+dX2UKGgGaAloD0MIChLb3QP09b+UhpRSlGgVSzJoFkdAgon2zWwu/XV9lChoBmgJaA9DCHTQJRx6C/S/lIaUUpRoFUsyaBZHQIKI9RpDeCV1fZQoaAZoCWgPQwjVzjC1pU72v5SGlFKUaBVLMmgWR0CCh/Q+EAYIdX2UKGgGaAloD0MILQq7KHrgAMCUhpRSlGgVSzJoFkdAgob45DJEIHV9lChoBmgJaA9DCPIHA8+9R/S/lIaUUpRoFUsyaBZHQIKRo9kjHGV1fZQoaAZoCWgPQwjBqnr5nSb0v5SGlFKUaBVLMmgWR0CCkJ91EE1VdX2UKGgGaAloD0MIKEUr9wIz+r+UhpRSlGgVSzJoFkdAgo+fPX05EXV9lChoBmgJaA9DCEJ79fHQ9/i/lIaUUpRoFUsyaBZHQIKOozJp35h1fZQoaAZoCWgPQwh7aB8r+G34v5SGlFKUaBVLMmgWR0CCleOaOPvKdX2UKGgGaAloD0MIuhKB6h8E/L+UhpRSlGgVSzJoFkdAgpTe6I3zc3V9lChoBmgJaA9DCIApAwe09PG/lIaUUpRoFUsyaBZHQIKT3N9ph4N1fZQoaAZoCWgPQwhQilbuBSb0v5SGlFKUaBVLMmgWR0CCkuAiFCb+dX2UKGgGaAloD0MIkQn4NZLE9L+UhpRSlGgVSzJoFkdAgpoo8QqZt3V9lChoBmgJaA9DCIP8bOS6afO/lIaUUpRoFUsyaBZHQIKZJVuJk5J1fZQoaAZoCWgPQwgr2hznNiH1v5SGlFKUaBVLMmgWR0CCmCM5wOvudX2UKGgGaAloD0MIeTwtP3CV97+UhpRSlGgVSzJoFkdAgpcmCyyD7XV9lChoBmgJaA9DCCAqjZjZp/a/lIaUUpRoFUsyaBZHQIKetGXokiV1fZQoaAZoCWgPQwhhpYKKql/6v5SGlFKUaBVLMmgWR0CCnbDjzZpSdX2UKGgGaAloD0MIdQMF3snn97+UhpRSlGgVSzJoFkdAgpyvBJqZdHV9lChoBmgJaA9DCL5ojxfSYfa/lIaUUpRoFUsyaBZHQIKbsrCm/Fl1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 9638,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7d8fd6bca6e9d4734d954e50f8b81f308a5ed856821d8ee32de96fe70a32c7b
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ba1499215284263b01a5e34aaac5e3cb6f9aacee7e8e3c9303ff6d5271856da
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbe312bd8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbe312c0180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 192780, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675858942599552287, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcVuHvxTYn7/6mCE9VyKCP+8syj8f4Wq/YUqGP7xfBj8Ymr4/1SZYv4CDEb+2qxK/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0cumv/f9tr+mrJu93C/DP94W3T/KW2K/0JjYPxOp8D5sHNs/M+N5vzjiB78KrV2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxW4e/FNifv/qYIT3Jmfi/1eVRvyIs679XIoI/7yzKPx/har+s7zI+Zc1vPSh4FD9hSoY/vF8GPxiavj+gF6y8T2yEvbBPtj/VJli/gIMRv7arEr8i/wi/XdeUP7/qrb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.0574781 -1.2487817 0.03945253]\n [ 1.016673 1.5794963 -0.9174976 ]\n [ 1.0491449 0.5248983 1.4890776 ]\n [-0.8443425 -0.5684128 -0.5729326 ]]", "desired_goal": "[[-1.303095 -1.4296254 -0.07601289]\n [ 1.524898 1.7272604 -0.8842131 ]\n [ 1.6921635 0.47003993 1.7118049 ]\n [-0.97612303 -0.5307956 -0.8659216 ]]", "observation": "[[-1.0574781 -1.2487817 0.03945253 -1.9421932 -0.8199132 -1.8372843 ]\n [ 1.016673 1.5794963 -0.9174976 0.1747424 0.05854549 0.57995844]\n [ 1.0491449 0.5248983 1.4890776 -0.02100736 -0.06465971 1.4243069 ]\n [-0.8443425 -0.5684128 -0.5729326 -0.535143 1.1628224 -1.3587264 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVXcPvf6uc71idEc+sonwvXyNfz0ZGxw+BbW1vcXt/b1ZDvk9wKrHPR9J8T3T+oU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03502591 -0.05949306 0.1947799 ]\n [-0.11745013 0.06239079 0.15244712]\n [-0.08872417 -0.12398867 0.1216094 ]\n [ 0.09749365 0.11781525 0.26167926]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.80722, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOWHCaFY2+r+UhpRSlIwBbJRLMowBdJRHQIIeTlDF6zF1fZQoaAZoCWgPQwi5ADRKl772v5SGlFKUaBVLMmgWR0CCHUmmce8xdX2UKGgGaAloD0MI/S0B+KcU97+UhpRSlGgVSzJoFkdAghxHNX5nDnV9lChoBmgJaA9DCJAty9dlOPm/lIaUUpRoFUsyaBZHQIIbSfpUxVR1fZQoaAZoCWgPQwiemssNhjr3v5SGlFKUaBVLMmgWR0CCIkjesPrfdX2UKGgGaAloD0MIw5ygTQ6f/L+UhpRSlGgVSzJoFkdAgiFFTWGyonV9lChoBmgJaA9DCKp9Oh4z0PW/lIaUUpRoFUsyaBZHQIIgRLGrCFd1fZQoaAZoCWgPQwjy7shYbX73v5SGlFKUaBVLMmgWR0CCH0c2BJ7LdX2UKGgGaAloD0MIFqWEYFU99r+UhpRSlGgVSzJoFkdAgiZvJzT4L3V9lChoBmgJaA9DCLcIjPUNjPe/lIaUUpRoFUsyaBZHQIIlajesPrh1fZQoaAZoCWgPQwj0p43qdOD1v5SGlFKUaBVLMmgWR0CCJGkdmxt6dX2UKGgGaAloD0MIprT+lgB8+r+UhpRSlGgVSzJoFkdAgiNrxI8QqnV9lChoBmgJaA9DCKDf929eHPG/lIaUUpRoFUsyaBZHQIIqgSxqwhZ1fZQoaAZoCWgPQwgbmx2pvjP4v5SGlFKUaBVLMmgWR0CCKXxdY4hmdX2UKGgGaAloD0MII9dNKa+V8r+UhpRSlGgVSzJoFkdAgih5n13+uXV9lChoBmgJaA9DCGub4nFRrfm/lIaUUpRoFUsyaBZHQIInfLNfPX11fZQoaAZoCWgPQwjbwvNSsXHyv5SGlFKUaBVLMmgWR0CCLpu5z5oHdX2UKGgGaAloD0MIb2WJzjJL9r+UhpRSlGgVSzJoFkdAgi2XfZVXFXV9lChoBmgJaA9DCLwhjQqcbPS/lIaUUpRoFUsyaBZHQIIslXA/LTx1fZQoaAZoCWgPQwhQ4J18eqzyv5SGlFKUaBVLMmgWR0CCK5hP0qYrdX2UKGgGaAloD0MIZjGx+bj2+L+UhpRSlGgVSzJoFkdAgjLQ+t8uz3V9lChoBmgJaA9DCN3temmKAPq/lIaUUpRoFUsyaBZHQIIxzH6uW8h1fZQoaAZoCWgPQwhWKxN+qV/2v5SGlFKUaBVLMmgWR0CCMMt4A0bcdX2UKGgGaAloD0MINe7Nb5ho9L+UhpRSlGgVSzJoFkdAgi/PYODraHV9lChoBmgJaA9DCMbeiy/ao/W/lIaUUpRoFUsyaBZHQII26Hj6vaF1fZQoaAZoCWgPQwhA+iZNg2L3v5SGlFKUaBVLMmgWR0CCNeQTVUdadX2UKGgGaAloD0MI7BLVWwMb9b+UhpRSlGgVSzJoFkdAgjTioCMglnV9lChoBmgJaA9DCBqGj4gpEfW/lIaUUpRoFUsyaBZHQIIz5gXuVop1fZQoaAZoCWgPQwjy7zMuHIjzv5SGlFKUaBVLMmgWR0CCOxYoy9EkdX2UKGgGaAloD0MIOxvyzwyi9L+UhpRSlGgVSzJoFkdAgjoSYG+sYHV9lChoBmgJaA9DCKExk6gXfPS/lIaUUpRoFUsyaBZHQII5EIJJGvx1fZQoaAZoCWgPQwhq3nGKjqT2v5SGlFKUaBVLMmgWR0CCOBYsd1dPdX2UKGgGaAloD0MIZeHra10q87+UhpRSlGgVSzJoFkdAgj8JHI6sAHV9lChoBmgJaA9DCHmsGRnk7ve/lIaUUpRoFUsyaBZHQII+BNj9XLh1fZQoaAZoCWgPQwjyzwziA/v3v5SGlFKUaBVLMmgWR0CCPQMDOkckdX2UKGgGaAloD0MIWmQ730+N+r+UhpRSlGgVSzJoFkdAgjwH8jzI3nV9lChoBmgJaA9DCMql8Quv5Pa/lIaUUpRoFUsyaBZHQIJDLcGkep51fZQoaAZoCWgPQwii8Nk6ONj4v5SGlFKUaBVLMmgWR0CCQim51/2CdX2UKGgGaAloD0MI/n4xW7Kq9b+UhpRSlGgVSzJoFkdAgkEnZK3/gnV9lChoBmgJaA9DCOOItfgUQPa/lIaUUpRoFUsyaBZHQIJAKvV3EAJ1fZQoaAZoCWgPQwh88UV7vFDxv5SGlFKUaBVLMmgWR0CCRyjopx3ndX2UKGgGaAloD0MIjNzT1R2L9b+UhpRSlGgVSzJoFkdAgkYj59E1EXV9lChoBmgJaA9DCEqyDkdX6fG/lIaUUpRoFUsyaBZHQIJFIbdadMF1fZQoaAZoCWgPQwj8cJAQ5cv2v5SGlFKUaBVLMmgWR0CCRCRPGhmHdX2UKGgGaAloD0MIYTdsW5TZ97+UhpRSlGgVSzJoFkdAgkt+1SflIXV9lChoBmgJaA9DCB9N9WT+Efe/lIaUUpRoFUsyaBZHQIJKevOhTOx1fZQoaAZoCWgPQwgxt3u5T47zv5SGlFKUaBVLMmgWR0CCSXiobXHzdX2UKGgGaAloD0MIGESkpl3M9r+UhpRSlGgVSzJoFkdAgkh8S5AhS3V9lChoBmgJaA9DCEvpmV5iLPm/lIaUUpRoFUsyaBZHQIJPpgG8mKJ1fZQoaAZoCWgPQwhb0lEOZlP1v5SGlFKUaBVLMmgWR0CCTqF6AvtddX2UKGgGaAloD0MIAwmKH2Ou9b+UhpRSlGgVSzJoFkdAgk2e8PFvRHV9lChoBmgJaA9DCPEpAMYz6Pe/lIaUUpRoFUsyaBZHQIJMopDu0C11fZQoaAZoCWgPQwg5mbhVEAP7v5SGlFKUaBVLMmgWR0CCU672+PBBdX2UKGgGaAloD0MIixpMw/BR9b+UhpRSlGgVSzJoFkdAglKrsKLKm3V9lChoBmgJaA9DCJXTnpJzYvu/lIaUUpRoFUsyaBZHQIJRqROk+HJ1fZQoaAZoCWgPQwiWBRN/FPX1v5SGlFKUaBVLMmgWR0CCUKuFHrhSdX2UKGgGaAloD0MI9kNssHCS9L+UhpRSlGgVSzJoFkdAgljjx0+1SnV9lChoBmgJaA9DCF3g8lgz8vi/lIaUUpRoFUsyaBZHQIJX4ydnTRZ1fZQoaAZoCWgPQwg+WwcHe1P7v5SGlFKUaBVLMmgWR0CCVuNZNfw7dX2UKGgGaAloD0MILA/SU+QQ+L+UhpRSlGgVSzJoFkdAglXonKGL1nV9lChoBmgJaA9DCMZP4978hvS/lIaUUpRoFUsyaBZHQIJfsl7dBSl1fZQoaAZoCWgPQwiFJokl5a7/v5SGlFKUaBVLMmgWR0CCXrFvQ4S6dX2UKGgGaAloD0MIOKRRgZNt+b+UhpRSlGgVSzJoFkdAgl20KRdQf3V9lChoBmgJaA9DCKjlB67yBPi/lIaUUpRoFUsyaBZHQIJcuQQtjCp1fZQoaAZoCWgPQwgRN6eSAeDxv5SGlFKUaBVLMmgWR0CCZhfdhy80dX2UKGgGaAloD0MIjUY+r3jq9r+UhpRSlGgVSzJoFkdAgmUV7x/d7HV9lChoBmgJaA9DCPnaM0sCVPW/lIaUUpRoFUsyaBZHQIJkGI68xsV1fZQoaAZoCWgPQwi9qN2vAjz4v5SGlFKUaBVLMmgWR0CCYyCI1tO3dX2UKGgGaAloD0MIj2/vGvTl97+UhpRSlGgVSzJoFkdAgm0KWkadc3V9lChoBmgJaA9DCKRVLekox/W/lIaUUpRoFUsyaBZHQIJsCdat9x91fZQoaAZoCWgPQwhZiuQrgRTzv5SGlFKUaBVLMmgWR0CCaw3c580DdX2UKGgGaAloD0MISMSUSKIX/b+UhpRSlGgVSzJoFkdAgmoVUEPlMnV9lChoBmgJaA9DCFzK+WLvhfS/lIaUUpRoFUsyaBZHQIJ0GqvNeMR1fZQoaAZoCWgPQwhHAg02dR72v5SGlFKUaBVLMmgWR0CCcxgogFHKdX2UKGgGaAloD0MISDZXzXNE87+UhpRSlGgVSzJoFkdAgnIZCWu5jHV9lChoBmgJaA9DCLQ7pBggkfS/lIaUUpRoFUsyaBZHQIJxHezlcQl1fZQoaAZoCWgPQwi1ozhHHd30v5SGlFKUaBVLMmgWR0CCf/BqsU7CdX2UKGgGaAloD0MIwopTrYXZ9L+UhpRSlGgVSzJoFkdAgn7vJq7AcnV9lChoBmgJaA9DCMUdb/JbtPO/lIaUUpRoFUsyaBZHQIJ98k8ifQN1fZQoaAZoCWgPQwjqIoWy8PX4v5SGlFKUaBVLMmgWR0CCfPjIaLn+dX2UKGgGaAloD0MIChLb3QP09b+UhpRSlGgVSzJoFkdAgon2zWwu/XV9lChoBmgJaA9DCHTQJRx6C/S/lIaUUpRoFUsyaBZHQIKI9RpDeCV1fZQoaAZoCWgPQwjVzjC1pU72v5SGlFKUaBVLMmgWR0CCh/Q+EAYIdX2UKGgGaAloD0MILQq7KHrgAMCUhpRSlGgVSzJoFkdAgob45DJEIHV9lChoBmgJaA9DCPIHA8+9R/S/lIaUUpRoFUsyaBZHQIKRo9kjHGV1fZQoaAZoCWgPQwjBqnr5nSb0v5SGlFKUaBVLMmgWR0CCkJ91EE1VdX2UKGgGaAloD0MIKEUr9wIz+r+UhpRSlGgVSzJoFkdAgo+fPX05EXV9lChoBmgJaA9DCEJ79fHQ9/i/lIaUUpRoFUsyaBZHQIKOozJp35h1fZQoaAZoCWgPQwh7aB8r+G34v5SGlFKUaBVLMmgWR0CCleOaOPvKdX2UKGgGaAloD0MIuhKB6h8E/L+UhpRSlGgVSzJoFkdAgpTe6I3zc3V9lChoBmgJaA9DCIApAwe09PG/lIaUUpRoFUsyaBZHQIKT3N9ph4N1fZQoaAZoCWgPQwhQilbuBSb0v5SGlFKUaBVLMmgWR0CCkuAiFCb+dX2UKGgGaAloD0MIkQn4NZLE9L+UhpRSlGgVSzJoFkdAgpoo8QqZt3V9lChoBmgJaA9DCIP8bOS6afO/lIaUUpRoFUsyaBZHQIKZJVuJk5J1fZQoaAZoCWgPQwgr2hznNiH1v5SGlFKUaBVLMmgWR0CCmCM5wOvudX2UKGgGaAloD0MIeTwtP3CV97+UhpRSlGgVSzJoFkdAgpcmCyyD7XV9lChoBmgJaA9DCCAqjZjZp/a/lIaUUpRoFUsyaBZHQIKetGXokiV1fZQoaAZoCWgPQwhhpYKKql/6v5SGlFKUaBVLMmgWR0CCnbDjzZpSdX2UKGgGaAloD0MIdQMF3snn97+UhpRSlGgVSzJoFkdAgpyvBJqZdHV9lChoBmgJaA9DCL5ojxfSYfa/lIaUUpRoFUsyaBZHQIKbsrCm/Fl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9638, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (733 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.0675077717169188, "std_reward": 0.17718760708926312, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T12:33:33.897879"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1db58fc7d0f54213673a35b1271ebd8b250e1243eab91f5ae9a5177b62b7fd15
3
+ size 3056