jayeshvpatil
commited on
Commit
•
84053fe
1
Parent(s):
016f8fa
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1554.39 +/- 160.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd80978c394720ec89889e7bf8c971c02d4862d78242019bf5ba474bc82a1787
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0076bb820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0076bb8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0076bb940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0076bb9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb0076bba60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb0076bbaf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0076bbb80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0076bbc10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb0076bbca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0076bbd30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0076bbdc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0076bbe50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb0076bcb80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679881518692513120,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANBh5j7S+ys/dFzBPt8Hrj4KXIO/aPamPytPh7+/k5u/ZkcHvgOOaEAf8W0/Fl0NvvCFc7/TRcE/xDwqPxe1bj4jSk+/qrrWP0DNGT9pX2e+/gYvv1FEij4d/gpA/TwVP2fXgz/IAQs/mDvnvykKZD/Xe6e+118ZPwR20z7+g+Y+lW32vpzyAz+ONxk/nuOTPpWCNz+V0QK+gjjIveURFsCK/Yi/MwTLPsxvFb/o/BI/KDwov6AXUz/8swg/8T/9v0dcN7/psZg9D9T2vmFZTD6Aini/yAELP8O1DT8pCmQ/IDMIveb0WT8YBIs+O12KP9ncsD8QmDq/jGCjveaSor25xUY94d7Nv5S/KL/SWrs/CyqPP4RMWL/2oOU+DsHtv4YSaj/ehGq/BmA9vjQOWT+oWzO/bdR3PIFkuT1kqN+/gIp4v62667/DtQ0/KQpkP+Jutr62Xwc85VYOP5H83D4F8ng+wzcfvsY1/D5Mdck+QBg0P+qzILuuYrM+jlAvP0X8m75iKA3AmgwHu5uM+76XK6Y+y9vFvzyLvT47MKw/Xcwnv3rxvT54VFa/AQHMu2fXgz+tuuu/w7UNP7yxj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaEng1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA34aBvQAAAAAj2uC/AAAAAISBwbwAAAAAEvMAQAAAAAAT0q09AAAAAHBq5j8AAAAAgRSrPQAAAABtmvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAu/nhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOLxR70AAAAAH8TxvwAAAADunGK9AAAAANA48D8AAAAAC5ELvgAAAADC6f4/AAAAAO8rCj4AAAAAUmXtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJq1krYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHLcw9AAAAAFTC6L8AAAAAYqi/PQAAAADcX/I/AAAAAALLkr0AAAAAXK33PwAAAACT4OE9AAAAACKH5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuzLY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPqKdPAAAAAADHui/AAAAAGV0qTwAAAAAm+v3PwAAAAAL26M9AAAAACi+4z8AAAAAMQ2ePAAAAABGUADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJy/k7uDzy2MAWyUTegDjAF0lEdAqXU1pTMq0HV9lChoBkdAm4YhnezlcWgHTegDaAhHQKl22ddVvMt1fZQoaAZHQJUUlxFRYRxoB03oA2gIR0CpeOJztCzDdX2UKGgGR0CaBvAEMb3oaAdN6ANoCEdAqXkXtUn5SHV9lChoBkdAjMkYVARkE2gHTegDaAhHQKmBLerMkhR1fZQoaAZHQJYLUliSaE1oB03oA2gIR0CpgtVNYbKidX2UKGgGR0CcbCTQVsUJaAdN6ANoCEdAqYUfyqdYn3V9lChoBkdAnEfof4h2XGgHTegDaAhHQKmFaKJl8PZ1fZQoaAZHQJpkbl8w5/9oB03oA2gIR0CpkDvOpsGgdX2UKGgGR0CYYEW7voeQaAdN6ANoCEdAqZHTd30PH3V9lChoBkdAmYQ1ImPYF2gHTegDaAhHQKmT14eLehx1fZQoaAZHQJWyNDkU9IRoB03oA2gIR0CplBJPIn0DdX2UKGgGR0CdvX0aqCHzaAdN6ANoCEdAqZwS+g13uHV9lChoBkdAnNFvUF0PpmgHTegDaAhHQKmdtXe3x4J1fZQoaAZHQJx6A42jwhJoB03oA2gIR0Cpn7v38GcGdX2UKGgGR0CboASSvC/HaAdN6ANoCEdAqZ/sAcT8HnV9lChoBkdAnKrvci4axWgHTegDaAhHQKmq0Gt6ol51fZQoaAZHQJ13LqVyFPBoB03oA2gIR0CprM2vr4WUdX2UKGgGR0CcwBn0TURWaAdN6ANoCEdAqa7eoP07KnV9lChoBkdAm40Vt0mtyWgHTegDaAhHQKmvFTtsvZh1fZQoaAZHQJwaig00m+loB03oA2gIR0CptvsZpBX0dX2UKGgGR0CYKpTewcHXaAdN6ANoCEdAqbiY8GLUC3V9lChoBkdAjdmXtShrWWgHTegDaAhHQKm6o3kPtlZ1fZQoaAZHQJqa4a5wwTNoB03oA2gIR0CputeANG3GdX2UKGgGR0CYeTHRTjvNaAdN6ANoCEdAqcRPzz3AVXV9lChoBkdAmQPTN6gM+mgHTegDaAhHQKnGzziCJ411fZQoaAZHQJW7wuscQy1oB03oA2gIR0CpydT37DVIdX2UKGgGR0CY+QsK9f1IaAdN6ANoCEdAqcoGBlMAWHV9lChoBkdAnrjSSmqHXWgHTegDaAhHQKnSBo8IRiB1fZQoaAZHQKA4vv9cbBJoB03oA2gIR0Cp08TKLbYcdX2UKGgGR0CYMp6MR6F/aAdN6ANoCEdAqdXPQpnYhHV9lChoBkdAm+qc2rGR3mgHTegDaAhHQKnWBtdiUgV1fZQoaAZHQJ25XhS9/SZoB03oA2gIR0Cp3gsir1dxdX2UKGgGR0CaSFPnB+F2aAdN6ANoCEdAqeBiHoHLR3V9lChoBkdAnQPcqe9SM2gHTegDaAhHQKnjbjDsMRZ1fZQoaAZHQJ61mE6DGtJoB03oA2gIR0Cp47r0J4SpdX2UKGgGR0CW/52y9mHyaAdN6ANoCEdAqez5jMFEA3V9lChoBkdAk6/MeXAuZmgHTegDaAhHQKnuk5qdpZh1fZQoaAZHQJRVII9kjHJoB03oA2gIR0Cp8JobwSamdX2UKGgGR0CWM+9V3ljmaAdN6ANoCEdAqfDMeMhounV9lChoBkdAlMPD8tPHk2gHTegDaAhHQKn4wYKIBR11fZQoaAZHQJiCu9QGfPJoB03oA2gIR0Cp+mV3ljmTdX2UKGgGR0CWJJCiRGMGaAdN6ANoCEdAqfz6hJyyU3V9lChoBkdAmX29eIEbHmgHTegDaAhHQKn9QXoC+111fZQoaAZHQJn9mN6w+t9oB03oA2gIR0CqB6B55Z8sdX2UKGgGR0CWB0Vi4J/oaAdN6ANoCEdAqgk3Vsk6cXV9lChoBkdAliuua8YhuGgHTegDaAhHQKoLLF9a2Wp1fZQoaAZHQJr6GioKlYVoB03oA2gIR0CqC2Agow23dX2UKGgGR0Cc1Oa3Zwn6aAdN6ANoCEdAqhMpdfLLZHV9lChoBkdAnlxCSA6Mi2gHTegDaAhHQKoUuqSX+l11fZQoaAZHQJz02Bas6q9oB03oA2gIR0CqFrBXjlxPdX2UKGgGR0Cf3/K1G9YfaAdN6ANoCEdAqhbgUi6g/XV9lChoBkdAnPvCH2ys0mgHTegDaAhHQKohheIEbHZ1fZQoaAZHQJ1Kxof0VahoB03oA2gIR0CqI5v3ztkXdX2UKGgGR0CdyjcNH6MzaAdN6ANoCEdAqiWiCJ40M3V9lChoBkdAnUDcAR02cmgHTegDaAhHQKol2NsFdLR1fZQoaAZHQJjq7S3LFGZoB03oA2gIR0CqLcLJbMX8dX2UKGgGR0CeSMljVhCuaAdN6ANoCEdAqi9XsTnJT3V9lChoBkdAnLRqkM1CPmgHTegDaAhHQKoxXTP0I1N1fZQoaAZHQJz5VFb3XZpoB03oA2gIR0CqMY3yiEg4dX2UKGgGR0Cck9Po3aSLaAdN6ANoCEdAqjqrIBBAwHV9lChoBkdAnsb7bg0j1WgHTegDaAhHQKo9Gla8pTd1fZQoaAZHQKAbJJcxCY1oB03oA2gIR0CqQCjdgv12dX2UKGgGR0CgABAn+hoNaAdN6ANoCEdAqkB3WMCLdnV9lChoBkdAm4Vo68xsVWgHTegDaAhHQKpIY4//vOR1fZQoaAZHQJ8nX863iJhoB03oA2gIR0CqShalLvkSdX2UKGgGR0CfWyNvwVj7aAdN6ANoCEdAqkwKWkadc3V9lChoBkdAmUfd6Tnq3WgHTegDaAhHQKpMPGAkLQZ1fZQoaAZHQJxTifJ3gUFoB03oA2gIR0CqVBrgOz6adX2UKGgGR0Cd/yt5D7ZWaAdN6ANoCEdAqlYw1pCa7XV9lChoBkdAkHiCGFi8WmgHTT0DaAhHQKpWNnTy8SR1fZQoaAZHQJeOd+5OJtVoB03oA2gIR0CqWXsO5J9RdX2UKGgGR0CaYcxvNu+AaAdN6ANoCEdAqmL27HyVfXV9lChoBkdAmbq95Y5ksmgHTegDaAhHQKpki1O0svt1fZQoaAZHQJ7PPOjZcs1oB03oA2gIR0CqZI7qhUR4dX2UKGgGR0CgUPtcnmaIaAdN6ANoCEdAqmbGdTYNAnV9lChoBkdAmcAd3W4EwGgHTegDaAhHQKpuf6+nIhh1fZQoaAZHQJyRi+M6zVtoB03oA2gIR0CqcBDZ13dLdX2UKGgGR0CdbYtihFmWaAdN6ANoCEdAqnAUQI2OyXV9lChoBkdAm3xMlHBk7WgHTegDaAhHQKpyQIVuaWp1fZQoaAZHQJGcOEWZZ0VoB03oA2gIR0CqfXcc2itadX2UKGgGR0CdzMUNayKOaAdN6ANoCEdAqn8LYI0IknV9lChoBkdAn0Wwmqo60mgHTegDaAhHQKp/DuYQarF1fZQoaAZHQJvyQVFhG6RoB03oA2gIR0CqgVk7nxJ/dX2UKGgGR0CPt5KWcBluaAdN6ANoCEdAqok214Pf9HV9lChoBkdAoBsHoC+10GgHTegDaAhHQKqKzHPNVzZ1fZQoaAZHQJ04bR4QjD9oB03oA2gIR0CqitAuh9LIdX2UKGgGR0CfL8jZL7GeaAdN6ANoCEdAqoz/7+DODHV9lChoBkdAoJULwF1SwWgHTegDaAhHQKqXQm51/2F1fZQoaAZHQJmffwc5sCVoB03oA2gIR0Cqmb8QI2OydX2UKGgGR0Cf2+U6gdwOaAdN6ANoCEdAqpnFQ2uPm3V9lChoBkdAneJRLf1pTWgHTegDaAhHQKqcDP3SKFZ1fZQoaAZHQJptXrxAjY9oB03oA2gIR0Cqo+7oKUmldX2UKGgGR0CWlHD3M6ikaAdN6ANoCEdAqqWdmcvugHV9lChoBkdAlXVn8TBZZGgHTegDaAhHQKqloQRPGhp1fZQoaAZHQJJcC9Jz1btoB03oA2gIR0Cqp8x1gYxddX2UKGgGR0CJFkkUsWfsaAdN6ANoCEdAqrEcZpBX0XV9lChoBkdAl9V0XUH6dmgHTegDaAhHQKqziIOYplV1fZQoaAZHQJclwPI4lyBoB03oA2gIR0Cqs46yB06pdX2UKGgGR0CWPB53Tuv2aAdN6ANoCEdAqrb6QHRkVnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c4e7638c902a21859df8fb89d1cb2df33330676c509bba4472c0349ba918e92
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:572d92ccba6a392baf916eb3f05e8aa27ee739860b59aad4540f907ece77cf65
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0076bb820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0076bb8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0076bb940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0076bb9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb0076bba60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb0076bbaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb0076bbb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0076bbc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb0076bbca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0076bbd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0076bbdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0076bbe50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb0076bcb80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679881518692513120, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANBh5j7S+ys/dFzBPt8Hrj4KXIO/aPamPytPh7+/k5u/ZkcHvgOOaEAf8W0/Fl0NvvCFc7/TRcE/xDwqPxe1bj4jSk+/qrrWP0DNGT9pX2e+/gYvv1FEij4d/gpA/TwVP2fXgz/IAQs/mDvnvykKZD/Xe6e+118ZPwR20z7+g+Y+lW32vpzyAz+ONxk/nuOTPpWCNz+V0QK+gjjIveURFsCK/Yi/MwTLPsxvFb/o/BI/KDwov6AXUz/8swg/8T/9v0dcN7/psZg9D9T2vmFZTD6Aini/yAELP8O1DT8pCmQ/IDMIveb0WT8YBIs+O12KP9ncsD8QmDq/jGCjveaSor25xUY94d7Nv5S/KL/SWrs/CyqPP4RMWL/2oOU+DsHtv4YSaj/ehGq/BmA9vjQOWT+oWzO/bdR3PIFkuT1kqN+/gIp4v62667/DtQ0/KQpkP+Jutr62Xwc85VYOP5H83D4F8ng+wzcfvsY1/D5Mdck+QBg0P+qzILuuYrM+jlAvP0X8m75iKA3AmgwHu5uM+76XK6Y+y9vFvzyLvT47MKw/Xcwnv3rxvT54VFa/AQHMu2fXgz+tuuu/w7UNP7yxj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaEng1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA34aBvQAAAAAj2uC/AAAAAISBwbwAAAAAEvMAQAAAAAAT0q09AAAAAHBq5j8AAAAAgRSrPQAAAABtmvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAu/nhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOLxR70AAAAAH8TxvwAAAADunGK9AAAAANA48D8AAAAAC5ELvgAAAADC6f4/AAAAAO8rCj4AAAAAUmXtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJq1krYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHLcw9AAAAAFTC6L8AAAAAYqi/PQAAAADcX/I/AAAAAALLkr0AAAAAXK33PwAAAACT4OE9AAAAACKH5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuzLY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPqKdPAAAAAADHui/AAAAAGV0qTwAAAAAm+v3PwAAAAAL26M9AAAAACi+4z8AAAAAMQ2ePAAAAABGUADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJy/k7uDzy2MAWyUTegDjAF0lEdAqXU1pTMq0HV9lChoBkdAm4YhnezlcWgHTegDaAhHQKl22ddVvMt1fZQoaAZHQJUUlxFRYRxoB03oA2gIR0CpeOJztCzDdX2UKGgGR0CaBvAEMb3oaAdN6ANoCEdAqXkXtUn5SHV9lChoBkdAjMkYVARkE2gHTegDaAhHQKmBLerMkhR1fZQoaAZHQJYLUliSaE1oB03oA2gIR0CpgtVNYbKidX2UKGgGR0CcbCTQVsUJaAdN6ANoCEdAqYUfyqdYn3V9lChoBkdAnEfof4h2XGgHTegDaAhHQKmFaKJl8PZ1fZQoaAZHQJpkbl8w5/9oB03oA2gIR0CpkDvOpsGgdX2UKGgGR0CYYEW7voeQaAdN6ANoCEdAqZHTd30PH3V9lChoBkdAmYQ1ImPYF2gHTegDaAhHQKmT14eLehx1fZQoaAZHQJWyNDkU9IRoB03oA2gIR0CplBJPIn0DdX2UKGgGR0CdvX0aqCHzaAdN6ANoCEdAqZwS+g13uHV9lChoBkdAnNFvUF0PpmgHTegDaAhHQKmdtXe3x4J1fZQoaAZHQJx6A42jwhJoB03oA2gIR0Cpn7v38GcGdX2UKGgGR0CboASSvC/HaAdN6ANoCEdAqZ/sAcT8HnV9lChoBkdAnKrvci4axWgHTegDaAhHQKmq0Gt6ol51fZQoaAZHQJ13LqVyFPBoB03oA2gIR0CprM2vr4WUdX2UKGgGR0CcwBn0TURWaAdN6ANoCEdAqa7eoP07KnV9lChoBkdAm40Vt0mtyWgHTegDaAhHQKmvFTtsvZh1fZQoaAZHQJwaig00m+loB03oA2gIR0CptvsZpBX0dX2UKGgGR0CYKpTewcHXaAdN6ANoCEdAqbiY8GLUC3V9lChoBkdAjdmXtShrWWgHTegDaAhHQKm6o3kPtlZ1fZQoaAZHQJqa4a5wwTNoB03oA2gIR0CputeANG3GdX2UKGgGR0CYeTHRTjvNaAdN6ANoCEdAqcRPzz3AVXV9lChoBkdAmQPTN6gM+mgHTegDaAhHQKnGzziCJ411fZQoaAZHQJW7wuscQy1oB03oA2gIR0CpydT37DVIdX2UKGgGR0CY+QsK9f1IaAdN6ANoCEdAqcoGBlMAWHV9lChoBkdAnrjSSmqHXWgHTegDaAhHQKnSBo8IRiB1fZQoaAZHQKA4vv9cbBJoB03oA2gIR0Cp08TKLbYcdX2UKGgGR0CYMp6MR6F/aAdN6ANoCEdAqdXPQpnYhHV9lChoBkdAm+qc2rGR3mgHTegDaAhHQKnWBtdiUgV1fZQoaAZHQJ25XhS9/SZoB03oA2gIR0Cp3gsir1dxdX2UKGgGR0CaSFPnB+F2aAdN6ANoCEdAqeBiHoHLR3V9lChoBkdAnQPcqe9SM2gHTegDaAhHQKnjbjDsMRZ1fZQoaAZHQJ61mE6DGtJoB03oA2gIR0Cp47r0J4SpdX2UKGgGR0CW/52y9mHyaAdN6ANoCEdAqez5jMFEA3V9lChoBkdAk6/MeXAuZmgHTegDaAhHQKnuk5qdpZh1fZQoaAZHQJRVII9kjHJoB03oA2gIR0Cp8JobwSamdX2UKGgGR0CWM+9V3ljmaAdN6ANoCEdAqfDMeMhounV9lChoBkdAlMPD8tPHk2gHTegDaAhHQKn4wYKIBR11fZQoaAZHQJiCu9QGfPJoB03oA2gIR0Cp+mV3ljmTdX2UKGgGR0CWJJCiRGMGaAdN6ANoCEdAqfz6hJyyU3V9lChoBkdAmX29eIEbHmgHTegDaAhHQKn9QXoC+111fZQoaAZHQJn9mN6w+t9oB03oA2gIR0CqB6B55Z8sdX2UKGgGR0CWB0Vi4J/oaAdN6ANoCEdAqgk3Vsk6cXV9lChoBkdAliuua8YhuGgHTegDaAhHQKoLLF9a2Wp1fZQoaAZHQJr6GioKlYVoB03oA2gIR0CqC2Agow23dX2UKGgGR0Cc1Oa3Zwn6aAdN6ANoCEdAqhMpdfLLZHV9lChoBkdAnlxCSA6Mi2gHTegDaAhHQKoUuqSX+l11fZQoaAZHQJz02Bas6q9oB03oA2gIR0CqFrBXjlxPdX2UKGgGR0Cf3/K1G9YfaAdN6ANoCEdAqhbgUi6g/XV9lChoBkdAnPvCH2ys0mgHTegDaAhHQKohheIEbHZ1fZQoaAZHQJ1Kxof0VahoB03oA2gIR0CqI5v3ztkXdX2UKGgGR0CdyjcNH6MzaAdN6ANoCEdAqiWiCJ40M3V9lChoBkdAnUDcAR02cmgHTegDaAhHQKol2NsFdLR1fZQoaAZHQJjq7S3LFGZoB03oA2gIR0CqLcLJbMX8dX2UKGgGR0CeSMljVhCuaAdN6ANoCEdAqi9XsTnJT3V9lChoBkdAnLRqkM1CPmgHTegDaAhHQKoxXTP0I1N1fZQoaAZHQJz5VFb3XZpoB03oA2gIR0CqMY3yiEg4dX2UKGgGR0Cck9Po3aSLaAdN6ANoCEdAqjqrIBBAwHV9lChoBkdAnsb7bg0j1WgHTegDaAhHQKo9Gla8pTd1fZQoaAZHQKAbJJcxCY1oB03oA2gIR0CqQCjdgv12dX2UKGgGR0CgABAn+hoNaAdN6ANoCEdAqkB3WMCLdnV9lChoBkdAm4Vo68xsVWgHTegDaAhHQKpIY4//vOR1fZQoaAZHQJ8nX863iJhoB03oA2gIR0CqShalLvkSdX2UKGgGR0CfWyNvwVj7aAdN6ANoCEdAqkwKWkadc3V9lChoBkdAmUfd6Tnq3WgHTegDaAhHQKpMPGAkLQZ1fZQoaAZHQJxTifJ3gUFoB03oA2gIR0CqVBrgOz6adX2UKGgGR0Cd/yt5D7ZWaAdN6ANoCEdAqlYw1pCa7XV9lChoBkdAkHiCGFi8WmgHTT0DaAhHQKpWNnTy8SR1fZQoaAZHQJeOd+5OJtVoB03oA2gIR0CqWXsO5J9RdX2UKGgGR0CaYcxvNu+AaAdN6ANoCEdAqmL27HyVfXV9lChoBkdAmbq95Y5ksmgHTegDaAhHQKpki1O0svt1fZQoaAZHQJ7PPOjZcs1oB03oA2gIR0CqZI7qhUR4dX2UKGgGR0CgUPtcnmaIaAdN6ANoCEdAqmbGdTYNAnV9lChoBkdAmcAd3W4EwGgHTegDaAhHQKpuf6+nIhh1fZQoaAZHQJyRi+M6zVtoB03oA2gIR0CqcBDZ13dLdX2UKGgGR0CdbYtihFmWaAdN6ANoCEdAqnAUQI2OyXV9lChoBkdAm3xMlHBk7WgHTegDaAhHQKpyQIVuaWp1fZQoaAZHQJGcOEWZZ0VoB03oA2gIR0CqfXcc2itadX2UKGgGR0CdzMUNayKOaAdN6ANoCEdAqn8LYI0IknV9lChoBkdAn0Wwmqo60mgHTegDaAhHQKp/DuYQarF1fZQoaAZHQJvyQVFhG6RoB03oA2gIR0CqgVk7nxJ/dX2UKGgGR0CPt5KWcBluaAdN6ANoCEdAqok214Pf9HV9lChoBkdAoBsHoC+10GgHTegDaAhHQKqKzHPNVzZ1fZQoaAZHQJ04bR4QjD9oB03oA2gIR0CqitAuh9LIdX2UKGgGR0CfL8jZL7GeaAdN6ANoCEdAqoz/7+DODHV9lChoBkdAoJULwF1SwWgHTegDaAhHQKqXQm51/2F1fZQoaAZHQJmffwc5sCVoB03oA2gIR0Cqmb8QI2OydX2UKGgGR0Cf2+U6gdwOaAdN6ANoCEdAqpnFQ2uPm3V9lChoBkdAneJRLf1pTWgHTegDaAhHQKqcDP3SKFZ1fZQoaAZHQJptXrxAjY9oB03oA2gIR0Cqo+7oKUmldX2UKGgGR0CWlHD3M6ikaAdN6ANoCEdAqqWdmcvugHV9lChoBkdAlXVn8TBZZGgHTegDaAhHQKqloQRPGhp1fZQoaAZHQJJcC9Jz1btoB03oA2gIR0Cqp8x1gYxddX2UKGgGR0CJFkkUsWfsaAdN6ANoCEdAqrEcZpBX0XV9lChoBkdAl9V0XUH6dmgHTegDaAhHQKqziIOYplV1fZQoaAZHQJclwPI4lyBoB03oA2gIR0Cqs46yB06pdX2UKGgGR0CWPB53Tuv2aAdN6ANoCEdAqrb6QHRkVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e88ad07c07a783514aa1cd97b02bf46c39a3004ae655d5461f949ac5869a830
|
3 |
+
size 1096371
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1554.3935884447797, "std_reward": 160.56228065601627, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T02:42:58.531347"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10a6e7d484f13ba29d9df55f2d9fab9798c679121f5a52387909063473de6b05
|
3 |
+
size 2136
|