[model_arguments] v2 = false v_parameterization = false pretrained_model_name_or_path = "/content/pretrained_model/AnyLoRA.safetensors" [additional_network_arguments] no_metadata = false unet_lr = 0.0001 text_encoder_lr = 5e-5 network_module = "networks.lora" network_dim = 32 network_alpha = 16 network_train_unet_only = false network_train_text_encoder_only = false [optimizer_arguments] optimizer_type = "AdamW8bit" learning_rate = 0.0001 max_grad_norm = 1.0 lr_scheduler = "constant" lr_warmup_steps = 0 [dataset_arguments] cache_latents = true debug_dataset = false vae_batch_size = 4 [training_arguments] output_dir = "/content/LoRA/output" output_name = "lora_train_v1" save_precision = "fp16" save_every_n_epochs = 1 train_batch_size = 6 max_token_length = 225 mem_eff_attn = false xformers = true max_train_epochs = 10 max_data_loader_n_workers = 8 persistent_data_loader_workers = true gradient_checkpointing = false gradient_accumulation_steps = 1 mixed_precision = "fp16" clip_skip = 2 logging_dir = "/content/LoRA/logs" log_prefix = "lora_train_v1" lowram = true [sample_prompt_arguments] sample_every_n_epochs = 1 sample_sampler = "ddim" [dreambooth_arguments] prior_loss_weight = 1.0 [saving_arguments] save_model_as = "safetensors"