jays009 commited on
Commit
03d4bdf
·
verified ·
1 Parent(s): 8f59583

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -47
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- model_name: Wheat Anomaly Detection Model
3
  tags:
4
- - pytorch
5
  - resnet
6
  - agriculture
7
  - anomaly-detection
@@ -10,59 +10,17 @@ tags:
10
  - pest-detection
11
  - agricultural-ai
12
  license: apache-2.0
13
- library_name: pytorch
14
  datasets:
15
- - wheat-dataset # Replace with the actual dataset name on Hugging Face if available
16
  model_type: resnet50
17
  preprocessing:
18
  - resize: 256
19
  - center_crop: 224
20
  - normalize: [0.485, 0.456, 0.406]
21
  - normalize_std: [0.229, 0.224, 0.225]
22
- framework: pytorch
23
  task: image-classification
24
  pipeline_tag: image-classification
25
 
26
  ---
27
-
28
- # Wheat Anomaly Detection Model
29
-
30
- ## Model Overview
31
-
32
- This model is trained to detect anomalies in wheat crops, such as pest infections (e.g., Fall Armyworm), diseases, or nutrient deficiencies. The model is based on the **ResNet50** architecture and was fine-tuned on a dataset of wheat images.
33
-
34
- ## Model Details
35
-
36
- - **Model Architecture**: ResNet50
37
- - **Number of Classes**: 2 (Fall Armyworm, Healthy Wheat)
38
- - **Input Shape**: 224x224 pixels, 3 channels (RGB)
39
- - **Training Framework**: PyTorch
40
- - **Optimizer**: Adam
41
- - **Learning Rate**: 0.001
42
- - **Epochs**: 20
43
- - **Batch Size**: 32
44
-
45
- ## Training
46
-
47
- The model was fine-tuned using a balanced dataset with images of healthy wheat and wheat infected by fall armyworms. The training involved transferring knowledge from a pretrained ResNet50 model and adjusting the final classification layer for the binary classification task.
48
-
49
- ### Dataset
50
-
51
- The model was trained on a dataset hosted on Hugging Face. You can access it here:
52
-
53
- - **Dataset**: `your_huggingface_username/your_dataset_name`
54
-
55
- ## How to Use
56
-
57
- To load and use this model in PyTorch, follow the steps below:
58
-
59
- ### 1. Load the Model
60
-
61
- ```python
62
- import torch
63
- import timm
64
-
65
- # Load the pre-trained model (fine-tuned ResNet50 for wheat anomaly detection)
66
- model = timm.create_model("resnet50", pretrained=False, num_classes=2)
67
- model.load_state_dict(torch.load("path_to_saved_model.pth"))
68
- model.eval()
 
1
  ---
2
+ model_name: Wheat Anomaly Detection Model (TensorFlow)
3
  tags:
4
+ - tensorflow
5
  - resnet
6
  - agriculture
7
  - anomaly-detection
 
10
  - pest-detection
11
  - agricultural-ai
12
  license: apache-2.0
13
+ library_name: tensorflow
14
  datasets:
15
+ - wheat-dataset # Replace with the actual dataset name if available
16
  model_type: resnet50
17
  preprocessing:
18
  - resize: 256
19
  - center_crop: 224
20
  - normalize: [0.485, 0.456, 0.406]
21
  - normalize_std: [0.229, 0.224, 0.225]
22
+ framework: tensorflow
23
  task: image-classification
24
  pipeline_tag: image-classification
25
 
26
  ---