jayur commited on
Commit
f47845c
·
1 Parent(s): 5df2a15

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.86 +/- 25.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e29ead1caf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29ead1cb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e29ead1cc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29ead1cca0>", "_build": "<function ActorCriticPolicy._build at 0x7e29ead1cd30>", "forward": "<function ActorCriticPolicy.forward at 0x7e29ead1cdc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e29ead1ce50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e29ead1cee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e29ead1cf70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e29ead1d000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e29ead1d090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e29ead1d120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e29eaeb6240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702379820070170163, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHmDz41Is/ZYxXvfDpur4Q5oM9lndGPQAAAAAAAAAAGuZdvUn0Vz4SkoI8UZ1xvrsj7ry6P548AAAAAAAAAAAAhq68uMvlPX43WzpCKnO+QyKYPOJnXD0AAAAAAAAAAJr3X7xc1ju8Hgvzu1FnET2DAak9AJnovQAAgD8AAIA/+HiSvkzLZz+qurC8EdEAv9Ut2b5e3Ro+AAAAAAAAAABmrAk8FNC1uhIfWjOiInQuP2vquThvsLMAAIA/AACAP9qKrT3YN90+k0GJvSbxnb474C29iKN0PAAAAAAAAAAAZifIPApoAjzu34g8IANOvpcs57yVpMc9AAAAAAAAAABmYoc7n4fOu5bQW7uG4Y08kUIdvQPRbz0AAIA/AACAP+bZZj3EHJs/kHFIPqP7yL6TNBg+bMWcPQAAAAAAAAAAgAVSvUQeCj54YGE9LygavhGlPzsjbPm8AAAAAAAAAAAzwMK8SI+juhjFLDMcevQuouVlukolw7MAAIA/AACAP80e9jxpn4M/IqobvOOCtL461aU9HIkbPQAAAAAAAAAAZhyWvTfEmD/+pEW+cZD1vkSdq72TraW7AAAAAAAAAADaslM+2JGZPxs6/T7k+tq+pyrYPoAQXj4AAAAAAAAAABpjTz28jbE/fvlsPgD1iL5RS5c9bsv8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC9d3bEgnuMAWyUTSYBjAF0lEdAkOjaz/p+t3V9lChoBkdActpaa1Cw8mgHTQoBaAhHQJDqIbvPTod1fZQoaAZHQHGnFPva11JoB003AWgIR0CQ6vtGus90dX2UKGgGR0ByTzQZ4wAVaAdNHQFoCEdAkOuGQOnVG3V9lChoBkdAcUoqrzXjEWgHTTMBaAhHQJDrpsoDxLF1fZQoaAZHQHHUpwwTM7loB0v3aAhHQJDr2nqFAVx1fZQoaAZHQHAJKvRqoIhoB00vAWgIR0CQ6+GUwBYFdX2UKGgGR0BxAcqH446waAdNFwFoCEdAkOxHY6GQCHV9lChoBkdAKhlHrhR64WgHS9FoCEdAkOyyoKlYU3V9lChoBkdAciJNy5qdpmgHTSwBaAhHQJDtku+RHPN1fZQoaAZHQHEjaG5+YtxoB01JAWgIR0CQ7a9FnZkDdX2UKGgGR0BvzGYOUdJbaAdNEgFoCEdAkO3poK2KEXV9lChoBkdAb8IQumJm/WgHTSkBaAhHQJDt9zijtXx1fZQoaAZHQHFWrQ1JlJ9oB003AWgIR0CQ73xIJ7b+dX2UKGgGR0Bxgz2RJVbSaAdNKAFoCEdAkPCSxmkFfXV9lChoBkdAbfN2+PBBRmgHTUEBaAhHQJDxm6jFhod1fZQoaAZHQHKUAxFiKBNoB00lAWgIR0CQ8bO32EkCdX2UKGgGR0BxHklkYoAoaAdNKAFoCEdAkPO31BdD6XV9lChoBkdActJyNGViWmgHTQABaAhHQJD0Ak5ZKWd1fZQoaAZHQHANanR9gF5oB00eAWgIR0CQ9dTNdJJ5dX2UKGgGR0BwPqKDTSb6aAdNOwFoCEdAkPXiGnGbTnV9lChoBkdAcYWndweeWmgHS/5oCEdAkPXtAPd2xXV9lChoBkdAb2VVGTcIq2gHTTwBaAhHQJD2nMJQcgh1fZQoaAZHQHFNpRoAXEZoB00zAWgIR0CQ9rRjz7MxdX2UKGgGR0BweVlar3j/aAdNMwFoCEdAkPdcHv+fiHV9lChoBkdAcLTDArQPZ2gHTQ0BaAhHQJD4TEBKcut1fZQoaAZHQHHHqur6tT1oB00aAWgIR0CQ+LY3eenRdX2UKGgGR0BwmKKuSwGGaAdNMQFoCEdAkPkpZSvTw3V9lChoBkdAb2adVea8YmgHTS4BaAhHQJD5MfxMFll1fZQoaAZHQHFb3/YJ3PloB00QAWgIR0CQ+jXTmW+odX2UKGgGR0ANBtWMju8caAdL5GgIR0CQ+q7UG3WndX2UKGgGR0Bx8A1P3ztkaAdNGgFoCEdAkPuJpJwsG3V9lChoBkdAclAeS0Sh8WgHS/NoCEdAkP54hyKekHV9lChoBkdAT+0UKzAvc2gHS85oCEdAkP6BLTQVsXV9lChoBkdAcWvfx+az/2gHTSIBaAhHQJD+xM495hV1fZQoaAZHQHE17D/EOy5oB003AWgIR0CQ/zvttyggdX2UKGgGR0BuOLch1TzeaAdNDgFoCEdAkP9lX/5tWXV9lChoBkdAcNuRQ79ycWgHTSMBaAhHQJEAFP9DQZ51fZQoaAZHQHIoJm29cr1oB00fAWgIR0CRAIjgydnTdX2UKGgGR0Bx4TM0P6KtaAdL/mgIR0CRASi0OVgQdX2UKGgGR0Bv98vf0mMPaAdNTQFoCEdAkQHkOI68x3V9lChoBkdAcMCnRb8m8mgHTSkBaAhHQJECKquKXOZ1fZQoaAZHQHGhwOavzOJoB00lAWgIR0CRAr0HQhOhdX2UKGgGR0Byb6AnUlRhaAdNPQFoCEdAkQNtPYWcjXV9lChoBkdAcRT0MgEEDGgHTSsBaAhHQJED64EwFkh1fZQoaAZHQHBtpMg2ZRdoB00gAWgIR0CRBAyZrpJPdX2UKGgGR0ByW5AY51eTaAdNOAFoCEdAkRXdT987ZHV9lChoBkdAcTX/0ulGgGgHTQcBaAhHQJEW+KsMiKR1fZQoaAZHQHLPdbxEv01oB00WAWgIR0CRGGxrSE13dX2UKGgGR0BvtmRLbpNcaAdNNwFoCEdAkRiZPEbYLHV9lChoBkdAcEZ0aIeo1mgHS/VoCEdAkRkzZQHiWHV9lChoBkdAb7jA/LTx5WgHTTgBaAhHQJEZYqiGnGd1fZQoaAZHQHCqedXko4NoB01UAWgIR0CRGdEwFkhBdX2UKGgGR0Bx5zZ+QU5/aAdNCQFoCEdAkRqD/VAiV3V9lChoBkdAcO8HxjJ+2GgHTUcBaAhHQJEaowpON5t1fZQoaAZHQHFoLDEWIoFoB00OAWgIR0CRGuk4m1IAdX2UKGgGR0BwXg7ZFocraAdNSgFoCEdAkRsd+PRzBHV9lChoBkdAcMNbcoH9nGgHTQsBaAhHQJEbWkZaV2R1fZQoaAZHQG701eruIARoB01HAWgIR0CRHb4MF2V3dX2UKGgGR0Buw0Tg2qDLaAdNCAFoCEdAkR3mU4aP0nV9lChoBkdAbs0pYs/Y8WgHTU0BaAhHQJEegeYD1Xh1fZQoaAZHQHFeZrtVrARoB01UAWgIR0CRHp5zYEntdX2UKGgGR0Bwgzcdo372aAdNRgFoCEdAkSEgbZOBUnV9lChoBkdAcdgyPuG9H2gHTRIBaAhHQJEh4C0WuYB1fZQoaAZHQG5Et34bjtJoB00IAWgIR0CRIgVbA1vVdX2UKGgGR0Bt23ZRKpT/aAdNIQFoCEdAkSI6tcObzHV9lChoBkdAcQJ91loUSWgHS/VoCEdAkSKt1EE1VHV9lChoBkdAc2Y4X40uUWgHTVIBaAhHQJEjGcRUWEd1fZQoaAZHQHFya0UoKD1oB00MAWgIR0CRIx8rI5o5dX2UKGgGR0BwpDc8DB/JaAdNUwFoCEdAkSNHa8Hv+nV9lChoBkdAYOUTvAoG6mgHTegDaAhHQJEjj2FnIyV1fZQoaAZHQG6PICEHt4RoB00sAWgIR0CRI98vEjxDdX2UKGgGR0BvtvE2pAD8aAdNHwFoCEdAkSRFjy4FzXV9lChoBkdAQKXo/zJ6p2gHS89oCEdAkSUw/X5FgHV9lChoBkdAPHQsGxD9fmgHS/JoCEdAkSWVymygPHV9lChoBkdAcf1qBEroXGgHTWEBaAhHQJEmBPrOZ9d1fZQoaAZHQHFeh0lqrR1oB01BAWgIR0CRKCIacZtOdX2UKGgGR0Bw6BiLEUCaaAdNWAFoCEdAkSonKr7wa3V9lChoBkdAceoQv6CUYGgHTSIBaAhHQJErPOt4iX91fZQoaAZHQHH8wbZOBUdoB00QAWgIR0CRK0wxnFo+dX2UKGgGR0BR34/Vy3kQaAdL3mgIR0CRLMSZjQRgdX2UKGgGR0BxHV0mtyPuaAdNGgFoCEdAkSzRcqvvB3V9lChoBkdAcGcTGo73f2gHTSkBaAhHQJEs7D63y7R1fZQoaAZHQG38YG2TgVJoB00bAWgIR0CRLXFTNt65dX2UKGgGR0Bxm7uRcNYsaAdNUgFoCEdAkS5uLJjlP3V9lChoBkdAcCyEvTPSlWgHTSQBaAhHQJEugmdAgPp1fZQoaAZHQHBSgDFId2hoB009AWgIR0CRL+s+mm+CdX2UKGgGR0Bwsej2zv7WaAdNWgFoCEdAkTAmmxdIG3V9lChoBkdAcF7E/jbSJGgHTQ0BaAhHQJEwZQAMlTp1fZQoaAZHQHDAnjhky1xoB00mAWgIR0CRMOXoTwlTdX2UKGgGR0BwjFhy8zyjaAdNkAFoCEdAkTHafJ3gUHV9lChoBkdAcFkiQ1aW5mgHTSwBaAhHQJEx8eT3Zf51fZQoaAZHQHChjWPLgXNoB00qAWgIR0CRM7SXdCVsdX2UKGgGR0BsVPf642CNaAdNNQFoCEdAkTV9Aood/HV9lChoBkdAccF/etSydGgHTSUBaAhHQJE1zRBu4w11fZQoaAZHQHK3GOp84PxoB00NAWgIR0CRNhAvL5h0dX2UKGgGR0Bvi9mcvugIaAdNHAFoCEdAkTaa3d9DyHV9lChoBkdAbm+APuogm2gHS/loCEdAkTarwnYxtnV9lChoBkdAcdpcbzbvgGgHTUcBaAhHQJE21Cw8nu11fZQoaAZHQGxTLKvFFUhoB00sAWgIR0CRNv98JD3NdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:624349780beeb92e40efd22de94fa49737df80431987ecd6979f5e1d8584c1f2
3
+ size 148038
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e29ead1caf0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29ead1cb80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e29ead1cc10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29ead1cca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e29ead1cd30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e29ead1cdc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e29ead1ce50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e29ead1cee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e29ead1cf70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e29ead1d000>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e29ead1d090>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e29ead1d120>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e29eaeb6240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1702379820070170163,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHmDz41Is/ZYxXvfDpur4Q5oM9lndGPQAAAAAAAAAAGuZdvUn0Vz4SkoI8UZ1xvrsj7ry6P548AAAAAAAAAAAAhq68uMvlPX43WzpCKnO+QyKYPOJnXD0AAAAAAAAAAJr3X7xc1ju8Hgvzu1FnET2DAak9AJnovQAAgD8AAIA/+HiSvkzLZz+qurC8EdEAv9Ut2b5e3Ro+AAAAAAAAAABmrAk8FNC1uhIfWjOiInQuP2vquThvsLMAAIA/AACAP9qKrT3YN90+k0GJvSbxnb474C29iKN0PAAAAAAAAAAAZifIPApoAjzu34g8IANOvpcs57yVpMc9AAAAAAAAAABmYoc7n4fOu5bQW7uG4Y08kUIdvQPRbz0AAIA/AACAP+bZZj3EHJs/kHFIPqP7yL6TNBg+bMWcPQAAAAAAAAAAgAVSvUQeCj54YGE9LygavhGlPzsjbPm8AAAAAAAAAAAzwMK8SI+juhjFLDMcevQuouVlukolw7MAAIA/AACAP80e9jxpn4M/IqobvOOCtL461aU9HIkbPQAAAAAAAAAAZhyWvTfEmD/+pEW+cZD1vkSdq72TraW7AAAAAAAAAADaslM+2JGZPxs6/T7k+tq+pyrYPoAQXj4AAAAAAAAAABpjTz28jbE/fvlsPgD1iL5RS5c9bsv8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC9d3bEgnuMAWyUTSYBjAF0lEdAkOjaz/p+t3V9lChoBkdActpaa1Cw8mgHTQoBaAhHQJDqIbvPTod1fZQoaAZHQHGnFPva11JoB003AWgIR0CQ6vtGus90dX2UKGgGR0ByTzQZ4wAVaAdNHQFoCEdAkOuGQOnVG3V9lChoBkdAcUoqrzXjEWgHTTMBaAhHQJDrpsoDxLF1fZQoaAZHQHHUpwwTM7loB0v3aAhHQJDr2nqFAVx1fZQoaAZHQHAJKvRqoIhoB00vAWgIR0CQ6+GUwBYFdX2UKGgGR0BxAcqH446waAdNFwFoCEdAkOxHY6GQCHV9lChoBkdAKhlHrhR64WgHS9FoCEdAkOyyoKlYU3V9lChoBkdAciJNy5qdpmgHTSwBaAhHQJDtku+RHPN1fZQoaAZHQHEjaG5+YtxoB01JAWgIR0CQ7a9FnZkDdX2UKGgGR0BvzGYOUdJbaAdNEgFoCEdAkO3poK2KEXV9lChoBkdAb8IQumJm/WgHTSkBaAhHQJDt9zijtXx1fZQoaAZHQHFWrQ1JlJ9oB003AWgIR0CQ73xIJ7b+dX2UKGgGR0Bxgz2RJVbSaAdNKAFoCEdAkPCSxmkFfXV9lChoBkdAbfN2+PBBRmgHTUEBaAhHQJDxm6jFhod1fZQoaAZHQHKUAxFiKBNoB00lAWgIR0CQ8bO32EkCdX2UKGgGR0BxHklkYoAoaAdNKAFoCEdAkPO31BdD6XV9lChoBkdActJyNGViWmgHTQABaAhHQJD0Ak5ZKWd1fZQoaAZHQHANanR9gF5oB00eAWgIR0CQ9dTNdJJ5dX2UKGgGR0BwPqKDTSb6aAdNOwFoCEdAkPXiGnGbTnV9lChoBkdAcYWndweeWmgHS/5oCEdAkPXtAPd2xXV9lChoBkdAb2VVGTcIq2gHTTwBaAhHQJD2nMJQcgh1fZQoaAZHQHFNpRoAXEZoB00zAWgIR0CQ9rRjz7MxdX2UKGgGR0BweVlar3j/aAdNMwFoCEdAkPdcHv+fiHV9lChoBkdAcLTDArQPZ2gHTQ0BaAhHQJD4TEBKcut1fZQoaAZHQHHHqur6tT1oB00aAWgIR0CQ+LY3eenRdX2UKGgGR0BwmKKuSwGGaAdNMQFoCEdAkPkpZSvTw3V9lChoBkdAb2adVea8YmgHTS4BaAhHQJD5MfxMFll1fZQoaAZHQHFb3/YJ3PloB00QAWgIR0CQ+jXTmW+odX2UKGgGR0ANBtWMju8caAdL5GgIR0CQ+q7UG3WndX2UKGgGR0Bx8A1P3ztkaAdNGgFoCEdAkPuJpJwsG3V9lChoBkdAclAeS0Sh8WgHS/NoCEdAkP54hyKekHV9lChoBkdAT+0UKzAvc2gHS85oCEdAkP6BLTQVsXV9lChoBkdAcWvfx+az/2gHTSIBaAhHQJD+xM495hV1fZQoaAZHQHE17D/EOy5oB003AWgIR0CQ/zvttyggdX2UKGgGR0BuOLch1TzeaAdNDgFoCEdAkP9lX/5tWXV9lChoBkdAcNuRQ79ycWgHTSMBaAhHQJEAFP9DQZ51fZQoaAZHQHIoJm29cr1oB00fAWgIR0CRAIjgydnTdX2UKGgGR0Bx4TM0P6KtaAdL/mgIR0CRASi0OVgQdX2UKGgGR0Bv98vf0mMPaAdNTQFoCEdAkQHkOI68x3V9lChoBkdAcMCnRb8m8mgHTSkBaAhHQJECKquKXOZ1fZQoaAZHQHGhwOavzOJoB00lAWgIR0CRAr0HQhOhdX2UKGgGR0Byb6AnUlRhaAdNPQFoCEdAkQNtPYWcjXV9lChoBkdAcRT0MgEEDGgHTSsBaAhHQJED64EwFkh1fZQoaAZHQHBtpMg2ZRdoB00gAWgIR0CRBAyZrpJPdX2UKGgGR0ByW5AY51eTaAdNOAFoCEdAkRXdT987ZHV9lChoBkdAcTX/0ulGgGgHTQcBaAhHQJEW+KsMiKR1fZQoaAZHQHLPdbxEv01oB00WAWgIR0CRGGxrSE13dX2UKGgGR0BvtmRLbpNcaAdNNwFoCEdAkRiZPEbYLHV9lChoBkdAcEZ0aIeo1mgHS/VoCEdAkRkzZQHiWHV9lChoBkdAb7jA/LTx5WgHTTgBaAhHQJEZYqiGnGd1fZQoaAZHQHCqedXko4NoB01UAWgIR0CRGdEwFkhBdX2UKGgGR0Bx5zZ+QU5/aAdNCQFoCEdAkRqD/VAiV3V9lChoBkdAcO8HxjJ+2GgHTUcBaAhHQJEaowpON5t1fZQoaAZHQHFoLDEWIoFoB00OAWgIR0CRGuk4m1IAdX2UKGgGR0BwXg7ZFocraAdNSgFoCEdAkRsd+PRzBHV9lChoBkdAcMNbcoH9nGgHTQsBaAhHQJEbWkZaV2R1fZQoaAZHQG701eruIARoB01HAWgIR0CRHb4MF2V3dX2UKGgGR0Buw0Tg2qDLaAdNCAFoCEdAkR3mU4aP0nV9lChoBkdAbs0pYs/Y8WgHTU0BaAhHQJEegeYD1Xh1fZQoaAZHQHFeZrtVrARoB01UAWgIR0CRHp5zYEntdX2UKGgGR0Bwgzcdo372aAdNRgFoCEdAkSEgbZOBUnV9lChoBkdAcdgyPuG9H2gHTRIBaAhHQJEh4C0WuYB1fZQoaAZHQG5Et34bjtJoB00IAWgIR0CRIgVbA1vVdX2UKGgGR0Bt23ZRKpT/aAdNIQFoCEdAkSI6tcObzHV9lChoBkdAcQJ91loUSWgHS/VoCEdAkSKt1EE1VHV9lChoBkdAc2Y4X40uUWgHTVIBaAhHQJEjGcRUWEd1fZQoaAZHQHFya0UoKD1oB00MAWgIR0CRIx8rI5o5dX2UKGgGR0BwpDc8DB/JaAdNUwFoCEdAkSNHa8Hv+nV9lChoBkdAYOUTvAoG6mgHTegDaAhHQJEjj2FnIyV1fZQoaAZHQG6PICEHt4RoB00sAWgIR0CRI98vEjxDdX2UKGgGR0BvtvE2pAD8aAdNHwFoCEdAkSRFjy4FzXV9lChoBkdAQKXo/zJ6p2gHS89oCEdAkSUw/X5FgHV9lChoBkdAPHQsGxD9fmgHS/JoCEdAkSWVymygPHV9lChoBkdAcf1qBEroXGgHTWEBaAhHQJEmBPrOZ9d1fZQoaAZHQHFeh0lqrR1oB01BAWgIR0CRKCIacZtOdX2UKGgGR0Bw6BiLEUCaaAdNWAFoCEdAkSonKr7wa3V9lChoBkdAceoQv6CUYGgHTSIBaAhHQJErPOt4iX91fZQoaAZHQHH8wbZOBUdoB00QAWgIR0CRK0wxnFo+dX2UKGgGR0BR34/Vy3kQaAdL3mgIR0CRLMSZjQRgdX2UKGgGR0BxHV0mtyPuaAdNGgFoCEdAkSzRcqvvB3V9lChoBkdAcGcTGo73f2gHTSkBaAhHQJEs7D63y7R1fZQoaAZHQG38YG2TgVJoB00bAWgIR0CRLXFTNt65dX2UKGgGR0Bxm7uRcNYsaAdNUgFoCEdAkS5uLJjlP3V9lChoBkdAcCyEvTPSlWgHTSQBaAhHQJEugmdAgPp1fZQoaAZHQHBSgDFId2hoB009AWgIR0CRL+s+mm+CdX2UKGgGR0Bwsej2zv7WaAdNWgFoCEdAkTAmmxdIG3V9lChoBkdAcF7E/jbSJGgHTQ0BaAhHQJEwZQAMlTp1fZQoaAZHQHDAnjhky1xoB00mAWgIR0CRMOXoTwlTdX2UKGgGR0BwjFhy8zyjaAdNkAFoCEdAkTHafJ3gUHV9lChoBkdAcFkiQ1aW5mgHTSwBaAhHQJEx8eT3Zf51fZQoaAZHQHChjWPLgXNoB00qAWgIR0CRM7SXdCVsdX2UKGgGR0BsVPf642CNaAdNNQFoCEdAkTV9Aood/HV9lChoBkdAccF/etSydGgHTSUBaAhHQJE1zRBu4w11fZQoaAZHQHK3GOp84PxoB00NAWgIR0CRNhAvL5h0dX2UKGgGR0Bvi9mcvugIaAdNHAFoCEdAkTaa3d9DyHV9lChoBkdAbm+APuogm2gHS/loCEdAkTarwnYxtnV9lChoBkdAcdpcbzbvgGgHTUcBaAhHQJE21Cw8nu11fZQoaAZHQGxTLKvFFUhoB00sAWgIR0CRNv98JD3NdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5fe6970ab97efda5b974f100dae1e5b550c81977a6653b4efcfff4b57ef1132
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dcd573317a0d724b991148558911c053dde7e0480a34864c035deed4493e39b
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (173 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.8609696, "std_reward": 25.17422302568182, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-12T11:53:31.094316"}