jbilcke-hf HF staff commited on
Commit
bc67239
·
verified ·
1 Parent(s): 0eab082

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -460
README.md CHANGED
@@ -1,463 +1,13 @@
1
- # CogVideoX-Fun
 
 
 
 
 
 
2
 
3
- 😊 Welcome!
4
 
5
- [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/alibaba-pai/CogVideoX-Fun-5b)
6
 
7
-
8
- # Table of Contents
9
- - [Table of Contents](#table-of-contents)
10
- - [Introduction](#introduction)
11
- - [Quick Start](#quick-start)
12
- - [Video Result](#video-result)
13
- - [How to use](#how-to-use)
14
- - [Model zoo](#model-zoo)
15
- - [TODO List](#todo-list)
16
- - [Reference](#reference)
17
- - [License](#license)
18
-
19
- # Introduction
20
- CogVideoX-Fun is a modified pipeline based on the CogVideoX structure, designed to provide more flexibility in generation. It can be used to create AI images and videos, as well as to train baseline models and Lora models for Diffusion Transformer. We support predictions directly from the already trained CogVideoX-Fun model, allowing the generation of videos at different resolutions, approximately 6 seconds long with 8 fps (1 to 49 frames). Users can also train their own baseline models and Lora models to achieve certain style transformations.
21
-
22
- We will support quick pull-ups from different platforms, refer to [Quick Start](#quick-start).
23
-
24
- What's New:
25
- - Use reward backpropagation to train Lora and optimize the video, aligning it better with human preferences, detailes in [here](scripts/README_TRAIN_REWARD.md). A new version of the control model supports various conditions (e.g., Canny, Depth, Pose, MLSD, etc.). [2024.11.21]
26
- - CogVideoX-Fun Control is now supported in diffusers. Thanks to [a-r-r-o-w](https://github.com/a-r-r-o-w) who contributed the support in this [PR](https://github.com/huggingface/diffusers/pull/9671). Check out the [docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox) to know more. [ 2024.10.16 ]
27
- - Retrain the i2v model and add noise to increase the motion amplitude of the video. Upload the control model training code and control model. [ 2024.09.29 ]
28
- - Create code! Now supporting Windows and Linux. Supports 2b and 5b models. Supports video generation at any resolution from 256x256x49 to 1024x1024x49. [ 2024.09.18 ]
29
-
30
- Function:
31
- - [Data Preprocessing](#data-preprocess)
32
- - [Train DiT](#dit-train)
33
- - [Video Generation](#video-gen)
34
-
35
- Our UI interface is as follows:
36
- ![ui](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/ui.jpg)
37
-
38
- # Quick Start
39
- ### 1. Cloud usage: AliyunDSW/Docker
40
- #### a. From AliyunDSW
41
- DSW has free GPU time, which can be applied once by a user and is valid for 3 months after applying.
42
-
43
- Aliyun provide free GPU time in [Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1), get it and use in Aliyun PAI-DSW to start CogVideoX-Fun within 5min!
44
-
45
- [![DSW Notebook](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/dsw.png)](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)
46
-
47
- #### b. From ComfyUI
48
- Our ComfyUI is as follows, please refer to [ComfyUI README](comfyui/README.md) for details.
49
- ![workflow graph](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/cogvideoxfunv1_workflow_i2v.jpg)
50
-
51
- #### c. From docker
52
- If you are using docker, please make sure that the graphics card driver and CUDA environment have been installed correctly in your machine.
53
-
54
- Then execute the following commands in this way:
55
-
56
- ```
57
- # pull image
58
- docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
59
-
60
- # enter image
61
- docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun
62
-
63
- # clone code
64
- git clone https://github.com/aigc-apps/CogVideoX-Fun.git
65
-
66
- # enter CogVideoX-Fun's dir
67
- cd CogVideoX-Fun
68
-
69
- # download weights
70
- mkdir models/Diffusion_Transformer
71
- mkdir models/Personalized_Model
72
-
73
- wget https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP.tar.gz -O models/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP.tar.gz
74
-
75
- cd models/Diffusion_Transformer/
76
- tar -xvf CogVideoX-Fun-V1.1-2b-InP.tar.gz
77
- cd ../../
78
- ```
79
-
80
- ### 2. Local install: Environment Check/Downloading/Installation
81
- #### a. Environment Check
82
- We have verified CogVideoX-Fun execution on the following environment:
83
-
84
- The detailed of Windows:
85
- - OS: Windows 10
86
- - python: python3.10 & python3.11
87
- - pytorch: torch2.2.0
88
- - CUDA: 11.8 & 12.1
89
- - CUDNN: 8+
90
- - GPU: Nvidia-3060 12G & Nvidia-3090 24G
91
-
92
- The detailed of Linux:
93
- - OS: Ubuntu 20.04, CentOS
94
- - python: python3.10 & python3.11
95
- - pytorch: torch2.2.0
96
- - CUDA: 11.8 & 12.1
97
- - CUDNN: 8+
98
- - GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G
99
-
100
- We need about 60GB available on disk (for saving weights), please check!
101
-
102
- #### b. Weights
103
- We'd better place the [weights](#model-zoo) along the specified path:
104
-
105
- ```
106
- 📦 models/
107
- ├── 📂 Diffusion_Transformer/
108
- │ ├── 📂 CogVideoX-Fun-V1.1-2b-InP/
109
- │ └── 📂 CogVideoX-Fun-V1.1-5b-InP/
110
- ├── 📂 Personalized_Model/
111
- │ └── your trained trainformer model / your trained lora model (for UI load)
112
- ```
113
-
114
- # Video Result
115
- The results displayed are all based on image.
116
-
117
- ### CogVideoX-Fun-V1.1-5B
118
-
119
- Resolution-1024
120
-
121
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
122
- <tr>
123
- <td>
124
- <video src="https://github.com/user-attachments/assets/34e7ec8f-293e-4655-bb14-5e1ee476f788" width="100%" controls autoplay loop></video>
125
- </td>
126
- <td>
127
- <video src="https://github.com/user-attachments/assets/7809c64f-eb8c-48a9-8bdc-ca9261fd5434" width="100%" controls autoplay loop></video>
128
- </td>
129
- <td>
130
- <video src="https://github.com/user-attachments/assets/8e76aaa4-c602-44ac-bcb4-8b24b72c386c" width="100%" controls autoplay loop></video>
131
- </td>
132
- <td>
133
- <video src="https://github.com/user-attachments/assets/19dba894-7c35-4f25-b15c-384167ab3b03" width="100%" controls autoplay loop></video>
134
- </td>
135
- </tr>
136
- </table>
137
-
138
-
139
- Resolution-768
140
-
141
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
142
- <tr>
143
- <td>
144
- <video src="https://github.com/user-attachments/assets/0bc339b9-455b-44fd-8917-80272d702737" width="100%" controls autoplay loop></video>
145
- </td>
146
- <td>
147
- <video src="https://github.com/user-attachments/assets/70a043b9-6721-4bd9-be47-78b7ec5c27e9" width="100%" controls autoplay loop></video>
148
- </td>
149
- <td>
150
- <video src="https://github.com/user-attachments/assets/d5dd6c09-14f3-40f8-8b6d-91e26519b8ac" width="100%" controls autoplay loop></video>
151
- </td>
152
- <td>
153
- <video src="https://github.com/user-attachments/assets/9327e8bc-4f17-46b0-b50d-38c250a9483a" width="100%" controls autoplay loop></video>
154
- </td>
155
- </tr>
156
- </table>
157
-
158
- Resolution-512
159
-
160
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
161
- <tr>
162
- <td>
163
- <video src="https://github.com/user-attachments/assets/ef407030-8062-454d-aba3-131c21e6b58c" width="100%" controls autoplay loop></video>
164
- </td>
165
- <td>
166
- <video src="https://github.com/user-attachments/assets/7610f49e-38b6-4214-aa48-723ae4d1b07e" width="100%" controls autoplay loop></video>
167
- </td>
168
- <td>
169
- <video src="https://github.com/user-attachments/assets/1fff0567-1e15-415c-941e-53ee8ae2c841" width="100%" controls autoplay loop></video>
170
- </td>
171
- <td>
172
- <video src="https://github.com/user-attachments/assets/bcec48da-b91b-43a0-9d50-cf026e00fa4f" width="100%" controls autoplay loop></video>
173
- </td>
174
- </tr>
175
- </table>
176
-
177
- ### CogVideoX-Fun-V1.1-5B with Reward Backpropagation
178
-
179
- <table border="0" style="width: 100%; text-align: center; margin-top: 20px;">
180
- <thead>
181
- <tr>
182
- <th style="text-align: center;" width="10%">Prompt</sup></th>
183
- <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.1-5B</th>
184
- <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.1-5B <br> HPSv2.1 Reward LoRA</th>
185
- <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.1-5B <br> MPS Reward LoRA</th>
186
- </tr>
187
- </thead>
188
- <tr>
189
- <td>
190
- Pig with wings flying above a diamond mountain
191
- </td>
192
- <td>
193
- <video src="https://github.com/user-attachments/assets/6682f507-4ca2-45e9-9d76-86e2d709efb3" width="100%" controls autoplay loop></video>
194
- </td>
195
- <td>
196
- <video src="https://github.com/user-attachments/assets/ec9219a2-96b3-44dd-b918-8176b2beb3b0" width="100%" controls autoplay loop></video>
197
- </td>
198
- <td>
199
- <video src="https://github.com/user-attachments/assets/a75c6a6a-0b69-4448-afc0-fda3c7955ba0" width="100%" controls autoplay loop></video>
200
- </td>
201
- </tr>
202
- <tr>
203
- <td>
204
- A dog runs through a field while a cat climbs a tree
205
- </td>
206
- <td>
207
- <video src="https://github.com/user-attachments/assets/0392d632-2ec3-46b4-8867-0da1db577b6d" width="100%" controls autoplay loop></video>
208
- </td>
209
- <td>
210
- <video src="https://github.com/user-attachments/assets/7d8c729d-6afb-408e-b812-67c40c3aaa96" width="100%" controls autoplay loop></video>
211
- </td>
212
- <td>
213
- <video src="https://github.com/user-attachments/assets/dcd1343c-7435-4558-b602-9c0fa08cbd59" width="100%" controls autoplay loop></video>
214
- </td>
215
- </tr>
216
- </table>
217
-
218
- ### CogVideoX-Fun-V1.1-5B-Control
219
-
220
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
221
- <tr>
222
- <td>
223
- <video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
224
- </td>
225
- <td>
226
- <video src="https://github.com/user-attachments/assets/fce43c0b-81fa-4ab2-9ca7-78d786f520e6" width="100%" controls autoplay loop></video>
227
- </td>
228
- <td>
229
- <video src="https://github.com/user-attachments/assets/b208b92c-5add-4ece-a200-3dbbe47b93c3" width="100%" controls autoplay loop></video>
230
- </td>
231
- <tr>
232
- <td>
233
- A young woman with beautiful clear eyes and blonde hair, wearing white clothes and twisting her body, with the camera focused on her face. High quality, masterpiece, best quality, high resolution, ultra-fine, dreamlike.
234
- </td>
235
- <td>
236
- A young woman with beautiful clear eyes and blonde hair, wearing white clothes and twisting her body, with the camera focused on her face. High quality, masterpiece, best quality, high resolution, ultra-fine, dreamlike.
237
- </td>
238
- <td>
239
- A young bear.
240
- </td>
241
- </tr>
242
- <tr>
243
- <td>
244
- <video src="https://github.com/user-attachments/assets/ea908454-684b-4d60-b562-3db229a250a9" width="100%" controls autoplay loop></video>
245
- </td>
246
- <td>
247
- <video src="https://github.com/user-attachments/assets/ffb7c6fc-8b69-453b-8aad-70dfae3899b9" width="100%" controls autoplay loop></video>
248
- </td>
249
- <td>
250
- <video src="https://github.com/user-attachments/assets/d3f757a3-3551-4dcb-9372-7a61469813f5" width="100%" controls autoplay loop></video>
251
- </td>
252
- </tr>
253
- </table>
254
-
255
- ### CogVideoX-Fun-V1.1-5B-Pose
256
-
257
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
258
- <tr>
259
- <td>
260
- Resolution-512
261
- </td>
262
- <td>
263
- Resolution-768
264
- </td>
265
- <td>
266
- Resolution-1024
267
- </td>
268
- <tr>
269
- <td>
270
- <video src="https://github.com/user-attachments/assets/a746df51-9eb7-4446-bee5-2ee30285c143" width="100%" controls autoplay loop></video>
271
- </td>
272
- <td>
273
- <video src="https://github.com/user-attachments/assets/db295245-e6aa-43be-8c81-32cb411f1473" width="100%" controls autoplay loop></video>
274
- </td>
275
- <td>
276
- <video src="https://github.com/user-attachments/assets/ec9875b2-fde0-48e1-ab7e-490cee51ef40" width="100%" controls autoplay loop></video>
277
- </td>
278
- </tr>
279
- </table>
280
-
281
- ### CogVideoX-Fun-V1.1-2B
282
-
283
- Resolution-768
284
-
285
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
286
- <tr>
287
- <td>
288
- <video src="https://github.com/user-attachments/assets/03235dea-980e-4fc5-9c41-e40a5bc1b6d0" width="100%" controls autoplay loop></video>
289
- </td>
290
- <td>
291
- <video src="https://github.com/user-attachments/assets/f7302648-5017-47db-bdeb-4d893e620b37" width="100%" controls autoplay loop></video>
292
- </td>
293
- <td>
294
- <video src="https://github.com/user-attachments/assets/cbadf411-28fa-4b87-813d-da63ff481904" width="100%" controls autoplay loop></video>
295
- </td>
296
- <td>
297
- <video src="https://github.com/user-attachments/assets/87cc9d0b-b6fe-4d2d-b447-174513d169ab" width="100%" controls autoplay loop></video>
298
- </td>
299
- </tr>
300
- </table>
301
-
302
- ### CogVideoX-Fun-V1.1-2B-Pose
303
-
304
- <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
305
- <tr>
306
- <td>
307
- Resolution-512
308
- </td>
309
- <td>
310
- Resolution-768
311
- </td>
312
- <td>
313
- Resolution-1024
314
- </td>
315
- <tr>
316
- <td>
317
- <video src="https://github.com/user-attachments/assets/487bcd7b-1b7f-4bb4-95b5-96a6b6548b3e" width="100%" controls autoplay loop></video>
318
- </td>
319
- <td>
320
- <video src="https://github.com/user-attachments/assets/2710fd18-8489-46e4-8086-c237309ae7f6" width="100%" controls autoplay loop></video>
321
- </td>
322
- <td>
323
- <video src="https://github.com/user-attachments/assets/b79513db-7747-4512-b86c-94f9ca447fe2" width="100%" controls autoplay loop></video>
324
- </td>
325
- </tr>
326
- </table>
327
-
328
- # How to use
329
-
330
- <h3 id="video-gen">1. Inference </h3>
331
-
332
- #### a. Using Python Code
333
- - Step 1: Download the corresponding [weights](#model-zoo) and place them in the models folder.
334
- - Step 2: Modify prompt, neg_prompt, guidance_scale, and seed in the predict_t2v.py file.
335
- - Step 3: Run the predict_t2v.py file, wait for the generated results, and save the results in the samples/cogvideox-fun-videos-t2v folder.
336
- - Step 4: If you want to combine other backbones you have trained with Lora, modify the predict_t2v.py and Lora_path in predict_t2v.py depending on the situation.
337
-
338
- #### b. Using webui
339
- - Step 1: Download the corresponding [weights](#model-zoo) and place them in the models folder.
340
- - Step 2: Run the app.py file to enter the graph page.
341
- - Step 3: Select the generated model based on the page, fill in prompt, neg_prompt, guidance_scale, and seed, click on generate, wait for the generated result, and save the result in the samples folder.
342
-
343
- #### c. From ComfyUI
344
- Please refer to [ComfyUI README](comfyui/README.md) for details.
345
-
346
- ### 2. Model Training
347
- A complete CogVideoX-Fun training pipeline should include data preprocessing, and Video DiT training.
348
-
349
- <h4 id="data-preprocess">a. data preprocessing</h4>
350
-
351
- We have provided a simple demo of training the Lora model through image data, which can be found in the [wiki](https://github.com/aigc-apps/CogVideoX-Fun/wiki/Training-Lora) for details.
352
-
353
- A complete data preprocessing link for long video segmentation, cleaning, and description can refer to [README](cogvideox/video_caption/README.md) in the video captions section.
354
-
355
- If you want to train a text to image and video generation model. You need to arrange the dataset in this format.
356
-
357
- ```
358
- 📦 project/
359
- ├── 📂 datasets/
360
- │ ├── 📂 internal_datasets/
361
- │ ├── 📂 train/
362
- │ │ ├── 📄 00000001.mp4
363
- │ │ ├── 📄 00000002.jpg
364
- │ │ └── 📄 .....
365
- │ └── 📄 json_of_internal_datasets.json
366
- ```
367
-
368
- The json_of_internal_datasets.json is a standard JSON file. The file_path in the json can to be set as relative path, as shown in below:
369
- ```json
370
- [
371
- {
372
- "file_path": "train/00000001.mp4",
373
- "text": "A group of young men in suits and sunglasses are walking down a city street.",
374
- "type": "video"
375
- },
376
- {
377
- "file_path": "train/00000002.jpg",
378
- "text": "A group of young men in suits and sunglasses are walking down a city street.",
379
- "type": "image"
380
- },
381
- .....
382
- ]
383
- ```
384
-
385
- You can also set the path as absolute path as follow:
386
- ```json
387
- [
388
- {
389
- "file_path": "/mnt/data/videos/00000001.mp4",
390
- "text": "A group of young men in suits and sunglasses are walking down a city street.",
391
- "type": "video"
392
- },
393
- {
394
- "file_path": "/mnt/data/train/00000001.jpg",
395
- "text": "A group of young men in suits and sunglasses are walking down a city street.",
396
- "type": "image"
397
- },
398
- .....
399
- ]
400
- ```
401
-
402
- <h4 id="dit-train">b. Video DiT training </h4>
403
-
404
- If the data format is relative path during data preprocessing, please set ```scripts/train.sh``` as follow.
405
- ```
406
- export DATASET_NAME="datasets/internal_datasets/"
407
- export DATASET_META_NAME="datasets/internal_datasets/json_of_internal_datasets.json"
408
- ```
409
-
410
- If the data format is absolute path during data preprocessing, please set ```scripts/train.sh``` as follow.
411
- ```
412
- export DATASET_NAME=""
413
- export DATASET_META_NAME="/mnt/data/json_of_internal_datasets.json"
414
- ```
415
-
416
- Then, we run scripts/train.sh.
417
- ```sh
418
- sh scripts/train.sh
419
- ```
420
-
421
- For details on setting some parameters, please refer to [Readme Train](scripts/README_TRAIN.md), [Readme Lora](scripts/README_TRAIN_LORA.md) and [Readme Control](scripts/README_TRAIN_CONTROL.md).
422
-
423
-
424
- # Model zoo
425
-
426
- V1.5:
427
-
428
- | Name | Storage Space | Hugging Face | Model Scope | Description |
429
- |--|--|--|--|--|
430
- | CogVideoX-Fun-V1.5-5b-InP | 20.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-5b-InP) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.5-5b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024) and has been trained on 85 frames at a rate of 8 frames per second. |
431
-
432
- V1.1:
433
-
434
- | Name | Storage Space | Hugging Face | Model Scope | Description |
435
- |--|--|--|--|--|
436
- | CogVideoX-Fun-V1.1-2b-InP | 13.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-InP) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-2b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. |
437
- | CogVideoX-Fun-V1.1-5b-InP | 20.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. Noise has been added to the reference image, and the amplitude of motion is greater compared to V1.0. |
438
- | CogVideoX-Fun-V1.1-2b-Pose | 13.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-2b-Pose) | Our official pose-control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second.|
439
- | CogVideoX-Fun-V1.1-2b-Control | 13.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Control) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-2b-Control) | Our official control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. Supporting various control conditions such as Canny, Depth, Pose, MLSD, etc.|
440
- | CogVideoX-Fun-V1.1-5b-Pose | 20.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-Pose) | Our official pose-control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second.|
441
- | CogVideoX-Fun-V1.1-5b-Control | 20.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Control) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-Control) | Our official control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. Supporting various control conditions such as Canny, Depth, Pose, MLSD, etc.|
442
- | CogVideoX-Fun-V1.1-Reward-LoRAs | - | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-Reward-LoRAs) | The official reward backpropagation technology model optimizes the videos generated by CogVideoX-Fun-V1.1 to better match human preferences. |
443
-
444
- V1.0:
445
-
446
- | Name | Storage Space | Hugging Face | Model Scope | Description |
447
- |--|--|--|--|--|
448
- | CogVideoX-Fun-2b-InP | 13.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-2b-InP) | [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-2b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. |
449
- | CogVideoX-Fun-5b-InP | 20.0 GB | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-5b-InP)| [😄Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-5b-InP)| Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. |
450
-
451
- # TODO List
452
- - Support Chinese.
453
-
454
- # Reference
455
- - CogVideo: https://github.com/THUDM/CogVideo/
456
- - EasyAnimate: https://github.com/aigc-apps/EasyAnimate
457
-
458
- # License
459
- This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
460
-
461
- The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under the [Apache 2.0 License](LICENSE).
462
-
463
- The CogVideoX-5B model (Transformers module) is released under the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE).
 
1
+ ---
2
+ frameworks:
3
+ - Pytorch
4
+ license: other
5
+ tasks:
6
+ - text-to-video-synthesis
7
+ ---
8
 
9
+ # CogVideoX-Fun-V1.5-5b-for-InferenceEndpoints
10
 
11
+ This model is a work-in-progress fork of CogVideoX-Fun-V1.5-5b to make it run on the Hugging Face Inference Endpoints.
12
 
13
+ For more information and credits, please refer to the [original repository](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-5b-InP/blob/main/README.md).