Upload handler.py
Browse files- handler.py +92 -0
handler.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, Union, Optional
|
2 |
+
import torch
|
3 |
+
from diffusers import LTXPipeline, LTXImageToVideoPipeline
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
import io
|
7 |
+
|
8 |
+
class EndpointHandler:
|
9 |
+
def __init__(self, path: str = ""):
|
10 |
+
"""Initialize the LTX Video handler with both text-to-video and image-to-video pipelines.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): Path to the model weights directory
|
14 |
+
"""
|
15 |
+
# Load both pipelines with bfloat16 precision as recommended in docs
|
16 |
+
self.text_to_video = LTXPipeline.from_pretrained(
|
17 |
+
path,
|
18 |
+
torch_dtype=torch.bfloat16
|
19 |
+
).to("cuda")
|
20 |
+
|
21 |
+
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
|
22 |
+
path,
|
23 |
+
torch_dtype=torch.bfloat16
|
24 |
+
).to("cuda")
|
25 |
+
|
26 |
+
# Enable memory optimizations
|
27 |
+
self.text_to_video.enable_model_cpu_offload()
|
28 |
+
self.image_to_video.enable_model_cpu_offload()
|
29 |
+
|
30 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
31 |
+
"""Process the input data and generate video using LTX.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
data (Dict[str, Any]): Input data containing:
|
35 |
+
- prompt (str): Text description for video generation
|
36 |
+
- image (Optional[str]): Base64 encoded image for image-to-video generation
|
37 |
+
- num_frames (Optional[int]): Number of frames to generate (default: 24)
|
38 |
+
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
|
39 |
+
- num_inference_steps (Optional[int]): Number of inference steps (default: 50)
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
Dict[str, Any]: Dictionary containing:
|
43 |
+
- frames: List of base64 encoded frames
|
44 |
+
"""
|
45 |
+
# Extract parameters
|
46 |
+
prompt = data.get("prompt")
|
47 |
+
if not prompt:
|
48 |
+
raise ValueError("'prompt' is required in the input data")
|
49 |
+
|
50 |
+
# Get optional parameters with defaults
|
51 |
+
num_frames = data.get("num_frames", 24)
|
52 |
+
guidance_scale = data.get("guidance_scale", 7.5)
|
53 |
+
num_inference_steps = data.get("num_inference_steps", 50)
|
54 |
+
|
55 |
+
# Check if image is provided for image-to-video generation
|
56 |
+
image_data = data.get("image")
|
57 |
+
|
58 |
+
try:
|
59 |
+
if image_data:
|
60 |
+
# Decode base64 image
|
61 |
+
image_bytes = base64.b64decode(image_data)
|
62 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
63 |
+
|
64 |
+
# Generate video from image
|
65 |
+
output = self.image_to_video(
|
66 |
+
prompt=prompt,
|
67 |
+
image=image,
|
68 |
+
num_frames=num_frames,
|
69 |
+
guidance_scale=guidance_scale,
|
70 |
+
num_inference_steps=num_inference_steps
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
# Generate video from text only
|
74 |
+
output = self.text_to_video(
|
75 |
+
prompt=prompt,
|
76 |
+
num_frames=num_frames,
|
77 |
+
guidance_scale=guidance_scale,
|
78 |
+
num_inference_steps=num_inference_steps
|
79 |
+
)
|
80 |
+
|
81 |
+
# Convert frames to base64
|
82 |
+
frames = []
|
83 |
+
for frame in output.frames[0]: # First element contains the frames
|
84 |
+
buffer = io.BytesIO()
|
85 |
+
frame.save(buffer, format="PNG")
|
86 |
+
frame_base64 = base64.b64encode(buffer.getvalue()).decode()
|
87 |
+
frames.append(frame_base64)
|
88 |
+
|
89 |
+
return {"frames": frames}
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
raise RuntimeError(f"Error generating video: {str(e)}")
|