Update handler.py
Browse files- handler.py +86 -31
handler.py
CHANGED
@@ -4,6 +4,10 @@ from diffusers import LTXPipeline, LTXImageToVideoPipeline
|
|
4 |
from PIL import Image
|
5 |
import base64
|
6 |
import io
|
|
|
|
|
|
|
|
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, path: str = ""):
|
@@ -26,6 +30,50 @@ class EndpointHandler:
|
|
26 |
# Enable memory optimizations
|
27 |
self.text_to_video.enable_model_cpu_offload()
|
28 |
self.image_to_video.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
31 |
"""Process the input data and generate video using LTX.
|
@@ -35,12 +83,14 @@ class EndpointHandler:
|
|
35 |
- prompt (str): Text description for video generation
|
36 |
- image (Optional[str]): Base64 encoded image for image-to-video generation
|
37 |
- num_frames (Optional[int]): Number of frames to generate (default: 24)
|
|
|
38 |
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
|
39 |
- num_inference_steps (Optional[int]): Number of inference steps (default: 50)
|
40 |
|
41 |
Returns:
|
42 |
Dict[str, Any]: Dictionary containing:
|
43 |
-
-
|
|
|
44 |
"""
|
45 |
# Extract parameters
|
46 |
prompt = data.get("prompt")
|
@@ -49,6 +99,7 @@ class EndpointHandler:
|
|
49 |
|
50 |
# Get optional parameters with defaults
|
51 |
num_frames = data.get("num_frames", 24)
|
|
|
52 |
guidance_scale = data.get("guidance_scale", 7.5)
|
53 |
num_inference_steps = data.get("num_inference_steps", 50)
|
54 |
|
@@ -56,37 +107,41 @@ class EndpointHandler:
|
|
56 |
image_data = data.get("image")
|
57 |
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
frame_base64 = base64.b64encode(buffer.getvalue()).decode()
|
87 |
-
frames.append(frame_base64)
|
88 |
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
except Exception as e:
|
92 |
-
raise RuntimeError(f"Error generating video: {str(e)}")
|
|
|
4 |
from PIL import Image
|
5 |
import base64
|
6 |
import io
|
7 |
+
import tempfile
|
8 |
+
import numpy as np
|
9 |
+
from moviepy.editor import ImageSequenceClip
|
10 |
+
import os
|
11 |
|
12 |
class EndpointHandler:
|
13 |
def __init__(self, path: str = ""):
|
|
|
30 |
# Enable memory optimizations
|
31 |
self.text_to_video.enable_model_cpu_offload()
|
32 |
self.image_to_video.enable_model_cpu_offload()
|
33 |
+
|
34 |
+
# Set default FPS
|
35 |
+
self.fps = 24
|
36 |
+
|
37 |
+
def _create_video_file(self, images: torch.Tensor, fps: int = 24) -> bytes:
|
38 |
+
"""Convert frames to an MP4 video file.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
images (torch.Tensor): Generated frames tensor
|
42 |
+
fps (int): Frames per second for the output video
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
bytes: MP4 video file content
|
46 |
+
"""
|
47 |
+
# Convert tensor to numpy array
|
48 |
+
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
49 |
+
video_np = (video_np * 255).astype(np.uint8)
|
50 |
+
|
51 |
+
# Get dimensions
|
52 |
+
height, width = video_np.shape[1:3]
|
53 |
+
|
54 |
+
# Create temporary file
|
55 |
+
output_path = tempfile.mktemp(suffix=".mp4")
|
56 |
+
|
57 |
+
try:
|
58 |
+
# Create video clip and write to file
|
59 |
+
clip = ImageSequenceClip(list(video_np), fps=fps)
|
60 |
+
resized = clip.resize((width, height))
|
61 |
+
resized.write_videofile(output_path, codec="libx264", audio=False)
|
62 |
+
|
63 |
+
# Read the video file
|
64 |
+
with open(output_path, "rb") as f:
|
65 |
+
video_content = f.read()
|
66 |
+
|
67 |
+
return video_content
|
68 |
+
|
69 |
+
finally:
|
70 |
+
# Cleanup
|
71 |
+
if os.path.exists(output_path):
|
72 |
+
os.remove(output_path)
|
73 |
+
|
74 |
+
# Clear memory
|
75 |
+
del video_np
|
76 |
+
torch.cuda.empty_cache()
|
77 |
|
78 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
79 |
"""Process the input data and generate video using LTX.
|
|
|
83 |
- prompt (str): Text description for video generation
|
84 |
- image (Optional[str]): Base64 encoded image for image-to-video generation
|
85 |
- num_frames (Optional[int]): Number of frames to generate (default: 24)
|
86 |
+
- fps (Optional[int]): Frames per second (default: 24)
|
87 |
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
|
88 |
- num_inference_steps (Optional[int]): Number of inference steps (default: 50)
|
89 |
|
90 |
Returns:
|
91 |
Dict[str, Any]: Dictionary containing:
|
92 |
+
- video: Base64 encoded MP4 video
|
93 |
+
- content-type: MIME type of the video
|
94 |
"""
|
95 |
# Extract parameters
|
96 |
prompt = data.get("prompt")
|
|
|
99 |
|
100 |
# Get optional parameters with defaults
|
101 |
num_frames = data.get("num_frames", 24)
|
102 |
+
fps = data.get("fps", self.fps)
|
103 |
guidance_scale = data.get("guidance_scale", 7.5)
|
104 |
num_inference_steps = data.get("num_inference_steps", 50)
|
105 |
|
|
|
107 |
image_data = data.get("image")
|
108 |
|
109 |
try:
|
110 |
+
with torch.no_grad():
|
111 |
+
if image_data:
|
112 |
+
# Decode base64 image
|
113 |
+
image_bytes = base64.b64decode(image_data)
|
114 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
115 |
+
|
116 |
+
# Generate video from image
|
117 |
+
output = self.image_to_video(
|
118 |
+
prompt=prompt,
|
119 |
+
image=image,
|
120 |
+
num_frames=num_frames,
|
121 |
+
guidance_scale=guidance_scale,
|
122 |
+
num_inference_steps=num_inference_steps,
|
123 |
+
output_type="pt"
|
124 |
+
).images
|
125 |
+
else:
|
126 |
+
# Generate video from text only
|
127 |
+
output = self.text_to_video(
|
128 |
+
prompt=prompt,
|
129 |
+
num_frames=num_frames,
|
130 |
+
guidance_scale=guidance_scale,
|
131 |
+
num_inference_steps=num_inference_steps,
|
132 |
+
output_type="pt"
|
133 |
+
).images
|
134 |
|
135 |
+
# Convert frames to video file
|
136 |
+
video_content = self._create_video_file(output, fps=fps)
|
137 |
+
|
138 |
+
# Encode video to base64
|
139 |
+
video_base64 = base64.b64encode(video_content).decode('utf-8')
|
|
|
|
|
140 |
|
141 |
+
return {
|
142 |
+
"video": video_base64,
|
143 |
+
"content-type": "video/mp4"
|
144 |
+
}
|
145 |
|
146 |
except Exception as e:
|
147 |
+
raise RuntimeError(f"Error generating video: {str(e)}")
|