jbilcke-hf's picture
jbilcke-hf HF staff
Update handler.py
d741ed4 verified
from dataclasses import dataclass
from typing import Dict, Any, Optional
import base64
import logging
import random
import traceback
import torch
from skyreelsinfer import TaskType
from skyreelsinfer.offload import OffloadConfig
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
from varnish import Varnish
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class GenerationConfig:
"""Configuration for video generation"""
# Content settings
prompt: str
negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
# Model settings
num_frames: int = 97 # SkyReels default
height: int = 544 # SkyReels default
width: int = 960 # SkyReels default
num_inference_steps: int = 30
guidance_scale: float = 6.0
# Reproducibility
seed: int = -1
# Varnish post-processing settings
fps: int = 30
double_num_frames: bool = False
super_resolution: bool = False
grain_amount: float = 0.0
quality: int = 18 # CRF scale (0-51, lower is better)
# Audio settings
enable_audio: bool = False
audio_prompt: str = ""
audio_negative_prompt: str = "voices, voice, talking, speaking, speech"
# Model-specific settings
embedded_guidance_scale: float = 1.0
quant_model: bool = True
gpu_num: int = 1
offload: bool = True
high_cpu_memory: bool = True
parameters_level: bool = False
compiler_transformer: bool = False
sequence_batch: bool = False
def validate_and_adjust(self) -> 'GenerationConfig':
"""Validate and adjust parameters"""
# Set random seed if not specified
if self.seed == -1:
self.seed = random.randint(0, 2**32 - 1)
return self
class EndpointHandler:
"""Handles video generation requests using SkyReels and Varnish"""
def __init__(self, path: str = ""):
"""Initialize handler with models
Args:
path: Path to model weights
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize SkyReelsVideoInfer
self.predictor = SkyReelsVideoInfer(
task_type=TaskType.T2V,
model_id=path or "Skywork/SkyReels-V1",
quant_model=True, # Enable quantization by default
world_size=1, # Single GPU by default
is_offload=True, # Enable offloading by default
offload_config=OffloadConfig(
high_cpu_memory=True,
parameters_level=False,
compiler_transformer=False,
),
enable_cfg_parallel=True
)
# Initialize Varnish for post-processing
self.varnish = Varnish(
device=self.device,
model_base_dir="/repository/varnish"
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process video generation requests
Args:
data: Request data containing:
- inputs (str): Prompt for video generation
- parameters (dict): Generation parameters
Returns:
Dictionary containing:
- video: Base64 encoded MP4 data URI
- content-type: MIME type
- metadata: Generation metadata
"""
# Extract inputs
inputs = data.pop("inputs", data)
if isinstance(inputs, dict):
prompt = inputs.get("prompt", "")
else:
prompt = inputs
params = data.get("parameters", {})
# Create and validate config
config = GenerationConfig(
prompt=prompt,
negative_prompt=params.get("negative_prompt", ""),
num_frames=params.get("num_frames", 97),
height=params.get("height", 544),
width=params.get("width", 960),
num_inference_steps=params.get("num_inference_steps", 30),
guidance_scale=params.get("guidance_scale", 6.0),
seed=params.get("seed", -1),
fps=params.get("fps", 30),
double_num_frames=params.get("double_num_frames", False),
super_resolution=params.get("super_resolution", False),
grain_amount=params.get("grain_amount", 0.0),
quality=params.get("quality", 18),
enable_audio=params.get("enable_audio", False),
audio_prompt=params.get("audio_prompt", ""),
audio_negative_prompt=params.get("audio_negative_prompt", "voices, voice, talking, speaking, speech"),
embedded_guidance_scale=params.get("embedded_guidance_scale", 1.0),
quant_model=params.get("quant_model", True),
gpu_num=params.get("gpu_num", 1),
offload=params.get("offload", True),
high_cpu_memory=params.get("high_cpu_memory", True),
parameters_level=params.get("parameters_level", False),
compiler_transformer=params.get("compiler_transformer", False),
sequence_batch=params.get("sequence_batch", False)
).validate_and_adjust()
try:
# Set random seeds
if config.seed != -1:
torch.manual_seed(config.seed)
random.seed(config.seed)
# Prepare generation parameters
generation_kwargs = {
"prompt": f"FPS-{config.fps}, {config.prompt}", # SkyReels expects FPS in prompt
"negative_prompt": config.negative_prompt,
"height": config.height,
"width": config.width,
"num_frames": config.num_frames,
"num_inference_steps": config.num_inference_steps,
"guidance_scale": config.guidance_scale,
"embedded_guidance_scale": config.embedded_guidance_scale,
"seed": config.seed,
"cfg_for": config.sequence_batch
}
# Generate video frames using SkyReels
output = self.predictor.inference(generation_kwargs)
# Process with Varnish
import asyncio
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(
self.varnish(
input_data=output,
fps=config.fps,
double_num_frames=config.double_num_frames,
super_resolution=config.super_resolution,
grain_amount=config.grain_amount,
enable_audio=config.enable_audio,
audio_prompt=config.audio_prompt,
audio_negative_prompt=config.audio_negative_prompt,
)
)
# Get video data URI
video_uri = loop.run_until_complete(
result.write(
type="data-uri",
quality=config.quality
)
)
return {
"video": video_uri,
"content-type": "video/mp4",
"metadata": {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration,
"seed": config.seed,
"gpu_num": config.gpu_num,
"quant_model": config.quant_model,
"guidance_scale": config.guidance_scale,
"embedded_guidance_scale": config.embedded_guidance_scale
}
}
except Exception as e:
message = f"Error generating video ({str(e)})\n{traceback.format_exc()}"
logger.error(message)
raise RuntimeError(message)