jbuch808 commited on
Commit
479447c
1 Parent(s): e222c84

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **TQC** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "sb3_contrib.tqc.policies", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x2caad3700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2caacfec0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 50000, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706930715733360000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyimGv0QNgb7f7/I9W1mPP16QSj8z+vI9KtZRPzJmkz2X9fI9wCjwvgwLir+X9fI9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL0auvwvSx79+40W/MMLTv/bPXr+Ou68/GW7RPzUAbj+fp5c/H6FOvq/Me7+zzoq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAArNhE/sclxP1B2hr5XEro/45wBP+/fkT+G/WU/yimGv0QNgb7f7/I9D50LO5WdPb043hq9/76JPS8mmryEWXk9Vf5gO5CSm7yloHY7lEGqPyrcQL9d0iS/U9XNPuRTgL9iTjc/6QmCv1tZjz9ekEo/M/ryPTZUATtpqT29bfgXvXqDij3uH5y85xh6PdibrzvjnpC8g36CO42v4L/QNyRAsAzkvhYBbb0d4Tm+FK8WPB81kT8q1lE/MmaTPZf18j1iFvY6IOY8vcBVG72pKIo9/cyavIRZeT1U/mA7j5KbvAxtdzuaiBrA89YgQIdiub5Du6S/GR+2vn15H7/wpZM/wCjwvgwLir+X9fI9QT36OtTQPr2xaxu9/CGKPXYombyEWXk9VP5gO5CSm7z+bHc7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-1.0481503 -0.25205433 0.11862158]\n [ 1.1199144 0.79126537 0.11864128]\n [ 0.81967413 0.07197227 0.11863249]\n [-0.4690609 -1.0784621 0.11863249]]", "desired_goal": "[[-1.3615168 -1.5610975 -0.7730025 ]\n [-1.6543636 -0.87036073 1.3729112 ]\n [ 1.6361724 0.92969066 1.1848029 ]\n [-0.2017865 -0.983592 -1.084433 ]]", "observation": "[[ 5.6723279e-01 9.4448382e-01 -2.6262140e-01 1.4536847e+00\n 5.0630015e-01 1.1396464e+00 8.9839971e-01 -1.0481503e+00\n -2.5205433e-01 1.1862158e-01 2.1303331e-03 -4.6292860e-02\n -3.7809581e-02 6.7258827e-02 -1.8817035e-02 6.0876384e-02\n 3.4331281e-03 -1.8990785e-02 3.7632373e-03]\n [ 1.3301263e+00 -7.5335944e-01 -6.4383489e-01 4.0201816e-01\n -1.0025601e+00 7.1603978e-01 -1.0159274e+00 1.1199144e+00\n 7.9126537e-01 1.1864128e-01 1.9734032e-03 -4.6304140e-02\n -3.7102152e-02 6.7633584e-02 -1.9058194e-02 6.1058905e-02\n 5.3591542e-03 -1.7653888e-02 3.9823665e-03]\n [-1.7553574e+00 2.5659065e+00 -4.4540930e-01 -5.7862364e-02\n -1.8152280e-01 9.1970153e-03 1.1344336e+00 8.1967413e-01\n 7.1972266e-02 1.1863249e-01 1.8774981e-03 -4.6117902e-02\n -3.7923574e-02 6.7460366e-02 -1.8896574e-02 6.0876384e-02\n 3.4331279e-03 -1.8990783e-02 3.7754206e-03]\n [-2.4145875e+00 2.5131195e+00 -3.6207983e-01 -1.2869648e+00\n -3.5570601e-01 -6.2294751e-01 1.1535015e+00 -4.6906090e-01\n -1.0784621e+00 1.1863249e-01 1.9091741e-03 -4.6585873e-02\n -3.7944499e-02 6.7447633e-02 -1.8696051e-02 6.0876384e-02\n 3.4331279e-03 -1.8990785e-02 3.7754173e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqJoJvlmt67zQv6M8d87oPfid0D2pwaM8fnSiPZBcQTzWwKM8hoSLvatqB77WwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8j3vXX1B77xxiU9JW4VvvXXlL0Y5jk+gIcJPsjiqz1wPC0+Xwm2vNYEqb0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA/vUE8T2CiPtK6aD2jUvI+c+eWPkOGAT/W8JA9qJoJvlmt67zQv6M8ONiMOE46GzcHMH24FrKpt0LuF7bQSlas6ulRL5SpWi4sf/u4cNpEPvHV4b20YGI8aqUdPROU3b5koZo++juwO3fO6D34ndA9qcGjPOJUvjfGJPs2M/u4OW4mnDcy/O+31HioN6109jqgbZw6yICcOY2VCb9Frjk/U0YUPaFIG757Jxe94NccvSR0oT1+dKI9kFxBPNbAozzmmJa2RNYZOIAcBbmyKTE1KcI3t/jHjKzzlZSu9i2KL1K1yriVfjG/ZUc2P7HGOj3G6Ci/M5P3vaBtr76kyaI9hoSLvatqB77WwKM8+ZiWNk3WGbjL7BG57yUxtcDBNzegbYysDzGULgxhiq+XuMq4lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.13437903 -0.02876918 0.01998892]\n [ 0.11367505 0.1018638 0.01998981]\n [ 0.07932375 0.01180185 0.01998941]\n [-0.06812386 -0.13224284 0.01998941]]", "desired_goal": "[[-0.12098809 -0.13277228 0.04047293]\n [-0.14592798 -0.07267753 0.1815418 ]\n [ 0.13430595 0.08392864 0.16917586]\n [-0.02222127 -0.08252876 0.02 ]]", "observation": "[[ 1.1824905e-02 3.1714103e-01 5.6818791e-02 4.7328672e-01\n 2.9473457e-01 5.0595492e-01 7.0771858e-02 -1.3437903e-01\n -2.8769182e-02 1.9988924e-02 6.7159941e-05 9.2522951e-06\n -6.0364629e-05 -2.0229298e-05 -2.2639438e-06 -3.0452758e-12\n 1.9091542e-10 4.9718077e-11 -1.1992300e-04]\n [ 1.9223952e-01 -1.1027134e-01 1.3817001e-02 3.8487829e-02\n -4.3277034e-01 3.0201256e-01 5.3782435e-03 1.1367505e-01\n 1.0186380e-01 1.9989805e-02 2.2689292e-05 7.4846639e-06\n 3.5282373e-04 1.8614544e-05 -2.8608458e-05 2.0083426e-05\n 1.8803083e-03 1.1934526e-03 2.9850588e-04]\n [-5.3743821e-01 7.2531539e-01 3.6199879e-02 -1.5164424e-01\n -3.6902886e-02 -3.8291812e-02 7.8834802e-02 7.9323754e-02\n 1.1801854e-02 1.9989412e-02 -4.4881481e-06 3.6677593e-05\n -1.2694485e-04 6.5998313e-07 -1.0952856e-05 -4.0012403e-12\n -6.7568971e-11 2.5134711e-10 -9.6658841e-05]\n [-6.9333774e-01 7.1202689e-01 4.5599643e-02 -6.5980184e-01\n -1.2088623e-01 -3.4263325e-01 7.9486161e-02 -6.8123862e-02\n -1.3224284e-01 1.9989412e-02 4.4881567e-06 -3.6677626e-05\n -1.3916490e-04 -6.5992839e-07 1.0952761e-05 -3.9912101e-12\n 6.7389753e-11 -2.5171010e-10 -9.6664931e-05]]"}, "_episode_num": 1032, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0B8n4zhxYJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8q0WJrLyMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8raFrVOKwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8rq8oQWepdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8vvG7z06HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8yuwMYuTSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8zUWFev6kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8zlTxXnyNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B83q0rsjVydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B8308q4H5adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B86pIwudwvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B87OrGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B87fdN34bkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B87pqO938odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8/vRWtEG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9CjGuLaVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9DIuDjBEbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Dk55qubJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Hmd8Rcu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9KaPBBRhudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9LAGqxTsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Lch5gPVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Pdl18stkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9SSjesPrfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9S5YvFm4BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9TXvfCQ9zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Xm9bor4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9ag2vStvGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9bGYa5wwTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9bihM8HObdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9flmDlHSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9icOQQtjDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9jBHAh0QsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9jfMxGlQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9noOmR/3GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9ql7SiM5wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9rOUNayKOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9rtMTN+spdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9v1P557gLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9yyG21D0EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9zX3IuGsWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9zzohY/3WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B934S6DoQndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B96y2v0RODdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B97Y9pyp71dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B971nbqQiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9/+3b212JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+C9iWmgrZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+DnFirksCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+EImQbMoudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+IbJFLFn7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+LaGdqcmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+MBz7uUlidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+MfU6PsAvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Qqr3j+72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Tl3MY/FBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+UOIyj59FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Us287IT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Y8URFqi5dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B+ZHI6r/83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+b8/pt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+cmvr4WUKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+dENqgyuZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+hcLux8lYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+kUoWpIczdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+k86Mir1edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+lYtNBWxRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+ppwo9cKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+sZUcXFcZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+s/qJMxoJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+td5hScbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+yLBP9DQadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+1CdTYNAkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+1pIy0rsjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+2DnkkrwwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+6UNFz+3pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+9BntfG+9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+9nvAoG6gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B++CUnogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/CPspobn6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/E7fj0cwQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/Fho6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/F8i+tbLVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/KW/336AOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/NKkEcKgJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/Nwssg+yJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/OMDklu3udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/SYsPJ7swdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/VDjkuHvddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/VrpJPIn0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/WHX4CZF5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/aTviLl3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/dC1a4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/doBjnV5KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/eC6FuejEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/icCdSVGDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/lOEUTL4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/l0fV7Qb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/mRCIDYAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/qhjz7MxHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYiJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 12475, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x2c9ef6dc0>", "add": "<function DictReplayBuffer.add at 0x2c9ef6e50>", "sample": "<function DictReplayBuffer.sample at 0x2c9ef6ee0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x2c9ef6f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2c9ef5e00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRPsrQP82ZAJiE4ibg3CLunwCMA2luY5SKEBMq+r6x7isLtj+lPtXmk1V1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "top_quantiles_to_drop_per_net": 2, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9qYnVjaDgwOC9taW5pZm9yZ2UzL2VudnMvaGYtcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9qYnVjaDgwOC9taW5pZm9yZ2UzL2VudnMvaGYtcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "macOS-14.1.1-arm64-i386-64bit Darwin Kernel Version 23.1.0: Mon Oct 9 21:27:24 PDT 2023; root:xnu-10002.41.9~6/RELEASE_ARM64_T6000", "Python": "3.9.18", "Stable-Baselines3": "2.2.1", "PyTorch": "2.2.0", "GPU Enabled": "False", "Numpy": "1.26.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
replay.mp4 ADDED
Binary file (747 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-02T19:54:52.838452"}
sac-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cee603ed3e254cc9bf99c93fe00332ad03bd792a5d562fb8f46f94ebd956f37
3
+ size 3501948
sac-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.1
sac-PandaPickAndPlace-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93444c45115da487ef82e335bc3ddd28d4245919cdf64c9ebf7ce1de809ea6e8
3
+ size 602702
sac-PandaPickAndPlace-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0a8de5f64d3ebe1d2b210fb480ca1d0f6ac46566afb5953fb8b3bfd525c815f
3
+ size 1287850
sac-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x2caad3700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x2caacfec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 50000,
16
+ "_total_timesteps": 50000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1706930715733360000,
21
+ "learning_rate": 0.0003,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyimGv0QNgb7f7/I9W1mPP16QSj8z+vI9KtZRPzJmkz2X9fI9wCjwvgwLir+X9fI9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL0auvwvSx79+40W/MMLTv/bPXr+Ou68/GW7RPzUAbj+fp5c/H6FOvq/Me7+zzoq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAArNhE/sclxP1B2hr5XEro/45wBP+/fkT+G/WU/yimGv0QNgb7f7/I9D50LO5WdPb043hq9/76JPS8mmryEWXk9Vf5gO5CSm7yloHY7lEGqPyrcQL9d0iS/U9XNPuRTgL9iTjc/6QmCv1tZjz9ekEo/M/ryPTZUATtpqT29bfgXvXqDij3uH5y85xh6PdibrzvjnpC8g36CO42v4L/QNyRAsAzkvhYBbb0d4Tm+FK8WPB81kT8q1lE/MmaTPZf18j1iFvY6IOY8vcBVG72pKIo9/cyavIRZeT1U/mA7j5KbvAxtdzuaiBrA89YgQIdiub5Du6S/GR+2vn15H7/wpZM/wCjwvgwLir+X9fI9QT36OtTQPr2xaxu9/CGKPXYombyEWXk9VP5gO5CSm7z+bHc7lGgOSwRLE4aUaBJ0lFKUdS4=",
26
+ "achieved_goal": "[[-1.0481503 -0.25205433 0.11862158]\n [ 1.1199144 0.79126537 0.11864128]\n [ 0.81967413 0.07197227 0.11863249]\n [-0.4690609 -1.0784621 0.11863249]]",
27
+ "desired_goal": "[[-1.3615168 -1.5610975 -0.7730025 ]\n [-1.6543636 -0.87036073 1.3729112 ]\n [ 1.6361724 0.92969066 1.1848029 ]\n [-0.2017865 -0.983592 -1.084433 ]]",
28
+ "observation": "[[ 5.6723279e-01 9.4448382e-01 -2.6262140e-01 1.4536847e+00\n 5.0630015e-01 1.1396464e+00 8.9839971e-01 -1.0481503e+00\n -2.5205433e-01 1.1862158e-01 2.1303331e-03 -4.6292860e-02\n -3.7809581e-02 6.7258827e-02 -1.8817035e-02 6.0876384e-02\n 3.4331281e-03 -1.8990785e-02 3.7632373e-03]\n [ 1.3301263e+00 -7.5335944e-01 -6.4383489e-01 4.0201816e-01\n -1.0025601e+00 7.1603978e-01 -1.0159274e+00 1.1199144e+00\n 7.9126537e-01 1.1864128e-01 1.9734032e-03 -4.6304140e-02\n -3.7102152e-02 6.7633584e-02 -1.9058194e-02 6.1058905e-02\n 5.3591542e-03 -1.7653888e-02 3.9823665e-03]\n [-1.7553574e+00 2.5659065e+00 -4.4540930e-01 -5.7862364e-02\n -1.8152280e-01 9.1970153e-03 1.1344336e+00 8.1967413e-01\n 7.1972266e-02 1.1863249e-01 1.8774981e-03 -4.6117902e-02\n -3.7923574e-02 6.7460366e-02 -1.8896574e-02 6.0876384e-02\n 3.4331279e-03 -1.8990783e-02 3.7754206e-03]\n [-2.4145875e+00 2.5131195e+00 -3.6207983e-01 -1.2869648e+00\n -3.5570601e-01 -6.2294751e-01 1.1535015e+00 -4.6906090e-01\n -1.0784621e+00 1.1863249e-01 1.9091741e-03 -4.6585873e-02\n -3.7944499e-02 6.7447633e-02 -1.8696051e-02 6.0876384e-02\n 3.4331279e-03 -1.8990785e-02 3.7754173e-03]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqJoJvlmt67zQv6M8d87oPfid0D2pwaM8fnSiPZBcQTzWwKM8hoSLvatqB77WwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8j3vXX1B77xxiU9JW4VvvXXlL0Y5jk+gIcJPsjiqz1wPC0+Xwm2vNYEqb0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA/vUE8T2CiPtK6aD2jUvI+c+eWPkOGAT/W8JA9qJoJvlmt67zQv6M8ONiMOE46GzcHMH24FrKpt0LuF7bQSlas6ulRL5SpWi4sf/u4cNpEPvHV4b20YGI8aqUdPROU3b5koZo++juwO3fO6D34ndA9qcGjPOJUvjfGJPs2M/u4OW4mnDcy/O+31HioN6109jqgbZw6yICcOY2VCb9Frjk/U0YUPaFIG757Jxe94NccvSR0oT1+dKI9kFxBPNbAozzmmJa2RNYZOIAcBbmyKTE1KcI3t/jHjKzzlZSu9i2KL1K1yriVfjG/ZUc2P7HGOj3G6Ci/M5P3vaBtr76kyaI9hoSLvatqB77WwKM8+ZiWNk3WGbjL7BG57yUxtcDBNzegbYysDzGULgxhiq+XuMq4lGgOSwRLE4aUaBJ0lFKUdS4=",
37
+ "achieved_goal": "[[-0.13437903 -0.02876918 0.01998892]\n [ 0.11367505 0.1018638 0.01998981]\n [ 0.07932375 0.01180185 0.01998941]\n [-0.06812386 -0.13224284 0.01998941]]",
38
+ "desired_goal": "[[-0.12098809 -0.13277228 0.04047293]\n [-0.14592798 -0.07267753 0.1815418 ]\n [ 0.13430595 0.08392864 0.16917586]\n [-0.02222127 -0.08252876 0.02 ]]",
39
+ "observation": "[[ 1.1824905e-02 3.1714103e-01 5.6818791e-02 4.7328672e-01\n 2.9473457e-01 5.0595492e-01 7.0771858e-02 -1.3437903e-01\n -2.8769182e-02 1.9988924e-02 6.7159941e-05 9.2522951e-06\n -6.0364629e-05 -2.0229298e-05 -2.2639438e-06 -3.0452758e-12\n 1.9091542e-10 4.9718077e-11 -1.1992300e-04]\n [ 1.9223952e-01 -1.1027134e-01 1.3817001e-02 3.8487829e-02\n -4.3277034e-01 3.0201256e-01 5.3782435e-03 1.1367505e-01\n 1.0186380e-01 1.9989805e-02 2.2689292e-05 7.4846639e-06\n 3.5282373e-04 1.8614544e-05 -2.8608458e-05 2.0083426e-05\n 1.8803083e-03 1.1934526e-03 2.9850588e-04]\n [-5.3743821e-01 7.2531539e-01 3.6199879e-02 -1.5164424e-01\n -3.6902886e-02 -3.8291812e-02 7.8834802e-02 7.9323754e-02\n 1.1801854e-02 1.9989412e-02 -4.4881481e-06 3.6677593e-05\n -1.2694485e-04 6.5998313e-07 -1.0952856e-05 -4.0012403e-12\n -6.7568971e-11 2.5134711e-10 -9.6658841e-05]\n [-6.9333774e-01 7.1202689e-01 4.5599643e-02 -6.5980184e-01\n -1.2088623e-01 -3.4263325e-01 7.9486161e-02 -6.8123862e-02\n -1.3224284e-01 1.9989412e-02 4.4881567e-06 -3.6677626e-05\n -1.3916490e-04 -6.5992839e-07 1.0952761e-05 -3.9912101e-12\n 6.7389753e-11 -2.5171010e-10 -9.6664931e-05]]"
40
+ },
41
+ "_episode_num": 1032,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0B8n4zhxYJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8q0WJrLyMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8raFrVOKwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8rq8oQWepdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8vvG7z06HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8yuwMYuTSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8zUWFev6kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8zlTxXnyNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B83q0rsjVydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B8308q4H5adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B86pIwudwvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B87OrGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B87fdN34bkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B87pqO938odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8/vRWtEG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9CjGuLaVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9DIuDjBEbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Dk55qubJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Hmd8Rcu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9KaPBBRhudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9LAGqxTsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Lch5gPVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Pdl18stkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9SSjesPrfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9S5YvFm4BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9TXvfCQ9zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Xm9bor4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9ag2vStvGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9bGYa5wwTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9bihM8HObdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9flmDlHSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9icOQQtjDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9jBHAh0QsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9jfMxGlQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9noOmR/3GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9ql7SiM5wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9rOUNayKOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9rtMTN+spdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9v1P557gLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9yyG21D0EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9zX3IuGsWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9zzohY/3WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B934S6DoQndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B96y2v0RODdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B97Y9pyp71dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B971nbqQiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9/+3b212JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+C9iWmgrZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+DnFirksCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+EImQbMoudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+IbJFLFn7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+LaGdqcmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+MBz7uUlidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+MfU6PsAvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Qqr3j+72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Tl3MY/FBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+UOIyj59FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Us287IT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Y8URFqi5dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B+ZHI6r/83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+b8/pt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+cmvr4WUKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+dENqgyuZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+hcLux8lYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+kUoWpIczdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+k86Mir1edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+lYtNBWxRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+ppwo9cKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+sZUcXFcZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+s/qJMxoJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+td5hScbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+yLBP9DQadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+1CdTYNAkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+1pIy0rsjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+2DnkkrwwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+6UNFz+3pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+9BntfG+9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+9nvAoG6gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B++CUnogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/CPspobn6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/E7fj0cwQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/Fho6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/F8i+tbLVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/KW/336AOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/NKkEcKgJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/Nwssg+yJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/OMDklu3udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/SYsPJ7swdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/VDjkuHvddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/VrpJPIn0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/WHX4CZF5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/aTviLl3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/dC1a4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/doBjnV5KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/eC6FuejEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/icCdSVGDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/lOEUTL4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/l0fV7Qb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/mRCIDYAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/qhjz7MxHdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYiJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
53
+ },
54
+ "_n_updates": 12475,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 256,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
67
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
68
+ "__init__": "<function DictReplayBuffer.__init__ at 0x2c9ef6dc0>",
69
+ "add": "<function DictReplayBuffer.add at 0x2c9ef6e50>",
70
+ "sample": "<function DictReplayBuffer.sample at 0x2c9ef6ee0>",
71
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x2c9ef6f70>",
72
+ "__abstractmethods__": "frozenset()",
73
+ "_abc_impl": "<_abc._abc_data object at 0x2c9ef5e00>"
74
+ },
75
+ "replay_buffer_kwargs": {},
76
+ "train_freq": {
77
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
78
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
79
+ },
80
+ "use_sde_at_warmup": false,
81
+ "target_entropy": -4.0,
82
+ "ent_coef": "auto",
83
+ "target_update_interval": 1,
84
+ "observation_space": {
85
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
86
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
87
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
88
+ "_shape": null,
89
+ "dtype": null,
90
+ "_np_random": null
91
+ },
92
+ "action_space": {
93
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
94
+ ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRPsrQP82ZAJiE4ibg3CLunwCMA2luY5SKEBMq+r6x7isLtj+lPtXmk1V1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
95
+ "dtype": "float32",
96
+ "bounded_below": "[ True True True True]",
97
+ "bounded_above": "[ True True True True]",
98
+ "_shape": [
99
+ 4
100
+ ],
101
+ "low": "[-1. -1. -1. -1.]",
102
+ "high": "[1. 1. 1. 1.]",
103
+ "low_repr": "-1.0",
104
+ "high_repr": "1.0",
105
+ "_np_random": "Generator(PCG64)"
106
+ },
107
+ "n_envs": 4,
108
+ "top_quantiles_to_drop_per_net": 2,
109
+ "lr_schedule": {
110
+ ":type:": "<class 'function'>",
111
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9qYnVjaDgwOC9taW5pZm9yZ2UzL2VudnMvaGYtcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9qYnVjaDgwOC9taW5pZm9yZ2UzL2VudnMvaGYtcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
112
+ },
113
+ "batch_norm_stats": [],
114
+ "batch_norm_stats_target": []
115
+ }
sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13cae76f3106d68377a4ca4d529b7e41d0403e08d6097688f521dcfeff2f9825
3
+ size 1940
sac-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1cf48b72106984edf85d2f218b1731ae9604b0a9a6771a3ff5a75425252176c
3
+ size 1587894
sac-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce10cfd3b3e459eee203e6583eb9f078e07918276a92c25fa2ffda3ea4f6888
3
+ size 1180
sac-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: macOS-14.1.1-arm64-i386-64bit Darwin Kernel Version 23.1.0: Mon Oct 9 21:27:24 PDT 2023; root:xnu-10002.41.9~6/RELEASE_ARM64_T6000
2
+ - Python: 3.9.18
3
+ - Stable-Baselines3: 2.2.1
4
+ - PyTorch: 2.2.0
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ac23432b261fe243ae9b4656ed4ab0fd1f93a4dc4021c58e3262b5553d3193
3
+ size 3248