|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Phi-MoE model.""" |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json", |
|
} |
|
|
|
class PhiMoEConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the |
|
[microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32064): |
|
Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`PhiMoEModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 6400): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`dict`, *optional*): |
|
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must |
|
contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and |
|
`original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must |
|
be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of |
|
the attention head size and the `original_max_position_embeddings` must be an integer. |
|
sliding_window (`int`, *optional*): |
|
Sliding window attention window size. If not specified, will default to `262144`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
num_experts_per_tok (`int`, *optional*, defaults to 2): |
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing |
|
parameter |
|
num_local_experts (`int`, *optional*, defaults to 16): |
|
Number of experts per Sparse MLP layer. |
|
output_router_logits (`bool`, *optional*, defaults to `False`): |
|
Whether or not the router logits should be returned by the model. Enabeling this will also |
|
allow the model to output the auxiliary loss. See [here]() for more details |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.0): |
|
The aux loss factor for the total loss. |
|
router_jitter_noise (`float`, *optional*, defaults to 0.01): |
|
Amount of noise to add to the router. |
|
|
|
```python |
|
>>> from transformers import PhiMoEModel, PhiMoEConfig |
|
|
|
>>> # Initializing a Phi-3 style configuration |
|
>>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct") |
|
|
|
>>> # Initializing a model from the configuration |
|
>>> model = PhiMoEModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "phimoe" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32064, |
|
hidden_size=4096, |
|
intermediate_size=6400, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=1e6, |
|
rope_scaling=None, |
|
sliding_window=None, |
|
attention_dropout=0.0, |
|
num_experts_per_tok=2, |
|
num_local_experts=16, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
router_jitter_noise=0.01, |
|
input_jitter_noise=0.0, |
|
attention_bias = False, |
|
lm_head_bias = False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
self.attention_bias = attention_bias |
|
self.lm_head_bias = lm_head_bias |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_local_experts = num_local_experts |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.router_jitter_noise = router_jitter_noise |
|
self.input_jitter_noise = input_jitter_noise |
|
|
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, " |
|
f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) |
|
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) |
|
rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None) |
|
rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None) |
|
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: |
|
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}") |
|
if not ( |
|
isinstance(rope_scaling_short_factor, list) |
|
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor) |
|
): |
|
raise ValueError( |
|
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}" |
|
) |
|
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2: |
|
raise ValueError( |
|
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}" |
|
) |
|
if not ( |
|
isinstance(rope_scaling_long_factor, list) |
|
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor) |
|
): |
|
raise ValueError( |
|
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}" |
|
) |
|
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2: |
|
raise ValueError( |
|
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}" |
|
) |
|
if not isinstance(rope_scaling_short_mscale, (int, float)): |
|
raise ValueError( |
|
f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}" |
|
) |
|
if not isinstance(rope_scaling_long_mscale, (int, float)): |
|
raise ValueError( |
|
f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}" |
|
) |
|
if not isinstance(original_max_position_embeddings, int): |
|
raise ValueError( |
|
f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}" |
|
) |