--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-bretonwelsh-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: cy split: test args: cy metrics: - name: Wer type: wer value: 0.29761332022507164 --- # wav2vec2-large-xls-r-300m-bretonwelsh-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4506 - Wer: 0.2976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9503 | 0.98 | 800 | 0.8330 | 0.7296 | | 0.6531 | 1.95 | 1600 | 0.5592 | 0.5470 | | 0.4637 | 2.93 | 2400 | 0.4711 | 0.4539 | | 0.3449 | 3.91 | 3200 | 0.4484 | 0.4116 | | 0.2694 | 4.88 | 4000 | 0.4313 | 0.3860 | | 0.2087 | 5.86 | 4800 | 0.4115 | 0.3616 | | 0.1649 | 6.84 | 5600 | 0.4105 | 0.3378 | | 0.1313 | 7.81 | 6400 | 0.4409 | 0.3236 | | 0.1079 | 8.79 | 7200 | 0.4402 | 0.3093 | | 0.0897 | 9.77 | 8000 | 0.4506 | 0.2976 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3