File size: 5,355 Bytes
516a027 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright 2019, The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Misc."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import tensorflow as tf
from tensorflow_model_optimization.python.core.internal.tensor_encoding.core import encoding_stage
@encoding_stage.tf_style_encoding_stage
class SplitBySmallValueEncodingStage(encoding_stage.EncodingStageInterface):
"""Encoding stage splitting the input by small values.
This encoding stage will split the input into two outputs: the value and the
indices of the elements whose absolute value is larger than a certain
threshold. The elements smaller than the threshold is then decoded to zero.
"""
ENCODED_INDICES_KEY = 'indices'
ENCODED_VALUES_KEY = 'non_zero_floats'
THRESHOLD_PARAMS_KEY = 'threshold'
def __init__(self, threshold=1e-8):
"""Initializer for the SplitBySmallValueEncodingStage.
Args:
threshold: The threshold of the small weights to be set to zero.
"""
self._threshold = threshold
@property
def name(self):
"""See base class."""
return 'split_by_small_value'
@property
def compressible_tensors_keys(self):
"""See base class."""
return [
self.ENCODED_VALUES_KEY,
self.ENCODED_INDICES_KEY,
]
@property
def commutes_with_sum(self):
"""See base class."""
return False
@property
def decode_needs_input_shape(self):
"""See base class."""
return True
def get_params(self):
"""See base class."""
encode_params = collections.OrderedDict([(self.THRESHOLD_PARAMS_KEY,
self._threshold)])
decode_params = collections.OrderedDict()
return encode_params, decode_params
def encode(self, x, encode_params):
"""See base class."""
threshold = tf.cast(encode_params[self.THRESHOLD_PARAMS_KEY], x.dtype)
indices = tf.cast(tf.compat.v2.where(tf.abs(x) > threshold), tf.int32)
non_zero_x = tf.gather_nd(x, indices)
indices = tf.squeeze(indices, axis=1)
return collections.OrderedDict([
(self.ENCODED_INDICES_KEY, indices),
(self.ENCODED_VALUES_KEY, non_zero_x),
])
def decode(self,
encoded_tensors,
decode_params,
num_summands=None,
shape=None):
"""See base class."""
del decode_params, num_summands # Unused.
indices = encoded_tensors[self.ENCODED_INDICES_KEY]
non_zero_x = encoded_tensors[self.ENCODED_VALUES_KEY]
indices = tf.expand_dims(indices, 1)
indices = tf.cast(indices, tf.int64)
shape = tf.cast(shape, tf.int64)
sparse_tensor = tf.SparseTensor(indices=indices, values=non_zero_x,
dense_shape=shape)
decoded_x = tf.sparse.to_dense(sparse_tensor)
return decoded_x
@encoding_stage.tf_style_encoding_stage
class DifferenceBetweenIntegersEncodingStage(
encoding_stage.EncodingStageInterface):
"""Encoding stage taking the difference between a sequence of integers.
This encoding stage can be useful when the original integers can be large, but
the difference of the integers are much smaller values and have a more compact
representation. For example, it can be combined with the
`SplitBySmallValueEncodingStage` to further compress the increasing sequence
of indices.
The encode method expects a tensor with 1 dimension and with integer dtype.
"""
ENCODED_VALUES_KEY = 'difference_between_integers'
@property
def name(self):
"""See base class."""
return 'difference_between_integers'
@property
def compressible_tensors_keys(self):
"""See base class."""
return [
self.ENCODED_VALUES_KEY,
]
@property
def commutes_with_sum(self):
"""See base class."""
return False
@property
def decode_needs_input_shape(self):
"""See base class."""
return False
def get_params(self):
"""See base class."""
return collections.OrderedDict(), collections.OrderedDict()
def encode(self, x, encode_params):
"""See base class."""
del encode_params # Unused.
if x.shape.ndims != 1:
raise ValueError('Number of dimensions must be 1. Shape of x: %s' %
x.shape)
if not x.dtype.is_integer:
raise TypeError(
'Unsupported input type: %s. Support only integer types.' % x.dtype)
diff_x = x - tf.concat([[0], x[:-1]], 0)
return collections.OrderedDict([(self.ENCODED_VALUES_KEY, diff_x)])
def decode(self,
encoded_tensors,
decode_params,
num_summands=None,
shape=None):
"""See base class."""
del decode_params, num_summands, shape # Unused
return tf.cumsum(encoded_tensors[self.ENCODED_VALUES_KEY])
|