# See the License for the specific language governing permissions and # limitations under the License. """Tests for the Wav2Vec2Phoneme tokenizer.""" import json import os import unittest from typing import Tuple from transformers import Wav2Vec2PhonemeCTCTokenizer from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.models.wav2vec2_phoneme.tokenization_wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from test_tokenization_common import TokenizerTesterMixin @require_phonemizer class Wav2Vec2PhonemeCTCTokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "facebook/wav2vec2-lv-60-espeak-cv-ft" tokenizer_class = Wav2Vec2PhonemeCTCTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab = ( " n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" ") vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.special_tokens_map = {"pad_token": "", "unk_token": "", "bos_token": "", "eos_token": ""} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") # overwrite since phonemes require specific creation def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))] toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], do_phonemize=False), toks)) if max_length is not None and len(toks) > max_length: toks = toks[:max_length] if min_length is not None and len(toks) < min_length and len(toks) > 0: while len(toks) < min_length: toks = toks + toks # toks_str = [t[1] for t in toks] toks_ids = [t[0] for t in toks] # Ensure consistency output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) if " " not in output_txt and len(toks_ids) > 1: output_txt = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) ) if with_prefix_space: output_txt = " " + output_txt output_ids = tokenizer.encode(output_txt, add_special_tokens=False) return output_txt, output_ids def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return Wav2Vec2PhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **kwargs) def test_tokenizer_add_new_tokens(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") # check adding a single token tokenizer.add_tokens("xxx") token_ids = tokenizer("m xxx ɪ", do_phonemize=False).input_ids self.assertEqual(token_ids, [13, 392, 17]) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"]) token_ids = tokenizer("m aaa ɪ ccc", do_phonemize=False).input_ids self.assertEqual(token_ids, [13, 393, 17, 395]) # aaa and ccc should be after xxx and 2 after aaa token_ids = tokenizer("maɪ c", do_phonemize=False).input_ids self.assertEqual(token_ids, [3, 200]) # mai should be (=3) def test_phonemize(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(phonemes, "h ə l oʊ h aʊ ɑːɹ j uː") def test_encode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids) def test_encode_decode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids) self.assertEqual(phonemes, phonemes_enc_dec) def test_decode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] tokens = tokenizer.decode(sample_ids[0]) batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def test_phonemize_with_word_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(phonemes, "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def test_encode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids)input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids) def test_encode_decode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids) self.assertEqual(phonemes, phonemes_enc_dec) def test_decode(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] tokens = tokenizer.decode(sample_ids[0]) batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def test_phonemize_with_word_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(phonemes, "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def test_encode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids) def test_decode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") # fmt: off sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter tokens = tokenizer.decode(sample_ids[0]) batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) # decode with no word_del_token filter tokens = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=False) batch_tokens = tokenizer.batch_decode(sample_ids, filter_word_delimiter_token=False) self.assertEqual(tokens, batch_tokens[0]) self.assertEqual(batch_tokens, ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"]) def test_encode_decode_with_del(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=False) self.assertEqual(phonemes, phonemes_enc_dec) def test_encode_decode_with_del_filter(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|") input_text = "Hello how are you" phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us") phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=True) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip(), phonemes_enc_dec) def test_change_phonemizer_lang(self): tokenizer = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token=None ) input_text = "Hello how are you" input_ids_en = tokenizer(input_text, phonemizer_lang="en-us").input_ids input_ids_fr = tokenizer(input_text, phonemizer_lang="fr-fr").input_ids self.assertNotEqual(input_ids_en, input_ids_fr) text_en = tokenizer.decode(input_ids_en) text_fr = tokenizer.decode(input_ids_fr) self.assertEqual(text_en, "h ə l oʊ h aʊ ɑːɹ j uː") self.assertEqual(text_fr, "ɛ l o h aʊ a ʁ j u") def test_case_insensitive(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") input_text_up = "Hello how Are you" input_text_low = "hello how are you" input_ids_up = tokenizer(input_text_up).input_ids input_ids_low = tokenizer(input_text_low).input_ids self.assertEqual(input_ids_up, input_ids_low) def test_tokenizer_decode_added_tokens(self): tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) # fmt: off sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on batch_tokens = tokenizer.batch_decode(sample_ids) self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"]) @staticmethod def get_from_offsets(offsets, key): retrieved_list = [d[key] for d in offsets] return retrieved_list def test_offsets(self): tokenizer = self.get_tokenizer(word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off # ksssɾɾ|ɾɾɾɾ|ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" sample_ids = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on outputs = tokenizer.decode(sample_ids, output_char_offsets=True, filter_word_delimiter_token=False) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()), 2) self.assertTrue("text" in outputs) self.assertTrue("char_offsets" in outputs) self.assertTrue(isinstance(outputs, Wav2Vec2PhonemeCTCTokenizerOutput)) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"], "char")), outputs.text) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "char"), ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "start_offset"), [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "end_offset"), [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def test_offsets_batch(self): tokenizer = self.get_tokenizer(word_delimiter_token="|") def check_list_tuples_equal(outputs_batch, outputs_list): self.assertTrue(isinstance(outputs_batch, Wav2Vec2PhonemeCTCTokenizerOutput)) self.assertTrue(isinstance(outputs_list[0], Wav2Vec2PhonemeCTCTokenizerOutput)) # transform list to ModelOutput outputs_batch_2 = Wav2Vec2PhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"], outputs_batch_2["text"]) def recursive_check(list_or_dict_1, list_or_dict_2): if isinstance(list_or_dict_1, list): [recursive_check(l1, l2) for l1, l2 in zip(list_or_dict_1, list_or_dict_2)] self.assertEqual(list_or_dict_1, list_or_dict_2) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"], outputs_batch_2["char_offsets"]) # fmt: off sample_ids = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char outputs_char_batch = tokenizer.batch_decode(sample_ids, output_char_offsets=True) outputs_char = [tokenizer.decode(ids, output_char_offsets=True) for ids in sample_ids] check_list_tuples_equal(outputs_char_batch, outputs_char) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes") def test_added_tokens_do_lower_case(self): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes") def test_encode_decode_with_spaces(self): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency") def test_internal_consistency(self): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing") def test_add_tokens_tokenizer(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1) self.assertGreater(tokens[-3], tokens[-4]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-3], tokenizer.pad_token_id) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def test_tf_encode_plus_sent_to_model(self): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def test_torch_encode_plus_sent_to_model(self): pass def test_convert_tokens_to_string_format(self): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokens = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] output = tokenizer.convert_tokens_to_string(tokens) self.assertIsInstance(output["text"], str)