--- license: mit datasets: - flytech/python-codes-25k language: - en base_model: - distilbert/distilgpt2 --- An example of small language learning model fine tuned for a domain-specific task (generating Python code). ### Direct Use ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") model_name = "jeff-vincent/distilgpt2-python-codegen" # Load the tokenizer and model for causal language modeling tokenizer = AutoTokenizer.from_pretrained(model_name) # If the tokenizer doesn't already have a padding token, set it explicitly if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Add a new pad token if none exists tokenizer.pad_token = tokenizer.eos_token # Or use eos_token as pad_token model = AutoModelForCausalLM.from_pretrained(model_name).to(device) model.resize_token_embeddings(len(tokenizer)) # Input text input_text = """ class Calculator: def __init__(self): self.result = None def add(self, a, b): self.result = a + b def subtract """ input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) # Generate output (token IDs) output_ids = model.generate(input_ids, max_length=200) # Decode the generated token IDs into text decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(decoded_output) ```