# **Khasi Fill-Mask Model** This project demonstrates how to use the Hugging Face Transformers library to perform a fill-mask task using the **`jefson08/kha-roberta`** model. The fill-mask task predicts the most likely token(s) to replace the `[MASK]` token in a given sentence. --- ## **Usage** ### **1. Import Dependencies** ```python from transformers import pipeline, AutoTokenizer ``` ### **2. Initialize the Model and Tokenizer** Load the tokenizer and model pipeline: ```python # Initialisation tokenizer = AutoTokenizer.from_pretrained('jefson08/kha-roberta') fill_mask = pipeline( "fill-mask", model="jefson08/kha-roberta", tokenizer=tokenizer, device="cuda", # Use "cuda" for GPU or omit for CPU ) ``` ### **3. Predict the [MASK] Token** Provide a sentence with a `[MASK]` token for prediction: ```python # Predict [MASK] token sentence = "Nga dei u briew u ba [MASK] bha." predictions = fill_mask(sentence) # Display predictions for prediction in predictions: print(f"{prediction['sequence']} (score: {prediction['score']:.4f})") ``` --- ## **Example Output** Given the input sentence: ```plaintext "Nga dei u briew u ba [MASK] bha." ``` The model might output: ```plaintext [{'score': 0.09230164438486099, 'token': 6086, 'token_str': 'mutlop', 'sequence': 'Nga dei u briew u ba mutlop bha.'}, {'score': 0.051360130310058594, 'token': 2059, 'token_str': 'stad', 'sequence': 'Nga dei u briew u ba stad bha.'}, {'score': 0.045497000217437744, 'token': 1864, 'token_str': 'khuid', 'sequence': 'Nga dei u briew u ba khuid bha.'}, {'score': 0.04180142655968666, 'token': 668, 'token_str': 'kham', 'sequence': 'Nga dei u briew u ba kham bha.'}, {'score': 0.027332570403814316, 'token': 2817, 'token_str': 'khlaiñ', 'sequence': 'Nga dei u briew u ba khlaiñ bha.'}] ``` --- ## **Model Information** The `jefson08/kha-roberta` model is fine-tuned for Khasi text tasks. It uses the fill-mask pipeline to predict and replace `[MASK]` tokens in sentences, providing insights into contextual language understanding. --- ## **Dependencies** - [Transformers](https://huggingface.co/docs/transformers): Provides the pipeline and model-loading utilities. - [PyTorch](https://pytorch.org/): Backend framework for running the model. Install the dependencies with: ```bash pip install transformers torch ``` --- ## **Acknowledgements** - Hugging Face [Transformers](https://huggingface.co/docs/transformers) library. - Model by [N Donald Jefferson Thabah](https://huggingface.co/jefson08/kha-roberta). --- ## **License** This project is licensed under the MIT License. See the [LICENSE](./LICENSE) file for more details. ---