File size: 5,983 Bytes
2eb2aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
This file contains a very simple TDNN module to use for speaker-id.

To replace this model, change the `!new:` tag in the hyperparameter file
to refer to a built-in SpeechBrain model or another file containing
a custom PyTorch module.

Authors
 * Nauman Dawalatabad 2020
 * Mirco Ravanelli 2020
"""

import torch  # noqa: F401
import torch.nn as nn

import speechbrain as sb
from speechbrain.nnet.CNN import Conv1d
from speechbrain.nnet.linear import Linear
from speechbrain.nnet.normalization import BatchNorm1d
from speechbrain.nnet.pooling import StatisticsPooling


class Xvector(torch.nn.Module):
    """This model extracts X-vectors for speaker recognition

    Arguments
    ---------
    device : str
        The device to place this model on (e.g. "cpu" or "cuda")
    activation : torch class
        A class for constructing the activation layers.
    tdnn_blocks : int
        Number of time-delay neural (TDNN) layers.
    tdnn_channels : list of ints
        Output channels for TDNN layer.
    tdnn_kernel_sizes : list of ints
        List of kernel sizes for each TDNN layer.
    tdnn_dilations : list of ints
        List of dilations for kernels in each TDNN layer.
    lin_neurons : int
        Number of neurons in linear layers.
    in_channels : int
        Number of channels expected in the input.

    Example
    -------
    >>> compute_xvect = Xvector()
    >>> input_feats = torch.rand([5, 10, 40])
    >>> outputs = compute_xvect(input_feats)
    >>> outputs.shape
    torch.Size([5, 1, 512])
    """

    def __init__(
        self,
        device="cpu",
        activation=torch.nn.LeakyReLU,
        tdnn_blocks=5,
        tdnn_channels=[512, 512, 512, 512, 1500],
        tdnn_kernel_sizes=[5, 3, 3, 1, 1],
        tdnn_dilations=[1, 2, 3, 1, 1],
        lin_neurons=512,
        in_channels=40,
    ):

        super().__init__()
        self.blocks = nn.ModuleList()

        # TDNN has convolutional layers with the given dilation factors
        # and kernel sizes. We here loop over all the convolutional layers
        # that we wanna add. Note that batch normalization is used after
        # the activations function in this case. This improves the
        # speaker-id performance a bit.
        for block_index in range(tdnn_blocks):
            out_channels = tdnn_channels[block_index]
            self.blocks.extend(
                [
                    Conv1d(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        kernel_size=tdnn_kernel_sizes[block_index],
                        dilation=tdnn_dilations[block_index],
                    ),
                    activation(),
                    BatchNorm1d(input_size=out_channels),
                ]
            )
            in_channels = tdnn_channels[block_index]

        # Statistical pooling. It converts a tensor of variable length
        # into a fixed-length tensor. The statistical pooling returns the
        # mean and the standard deviation.
        self.blocks.append(StatisticsPooling())

        # Final linear transformation.
        self.blocks.append(
            Linear(
                input_size=out_channels * 2,  # mean + std,
                n_neurons=lin_neurons,
                bias=True,
                combine_dims=False,
            )
        )

    def forward(self, x, lens=None):
        """Returns the x-vectors.

        Arguments
        ---------
        x : torch.Tensor
            The input features for computation.
        lens : torch.Tensor
            The length of the corresponding inputs.

        Returns
        -------
        The computed x-vectors
        """
        for layer in self.blocks:
            try:
                x = layer(x, lengths=lens)
            except TypeError:
                x = layer(x)
        return x


class Classifier(sb.nnet.containers.Sequential):
    """This class implements the last MLP on the top of xvector features.
    Arguments
    ---------
    input_shape : tuple
        Expected shape of an example input.
    activation : torch class
        A class for constructing the activation layers.
    lin_blocks : int
        Number of linear layers.
    lin_neurons : int
        Number of neurons in linear layers.
    out_neurons : int
        Number of output neurons.

    Example
    -------
    >>> input_feats = torch.rand([5, 10, 40])
    >>> compute_xvect = Xvector()
    >>> xvects = compute_xvect(input_feats)
    >>> classify = Classifier(input_shape=xvects.shape)
    >>> output = classify(xvects)
    >>> output.shape
    torch.Size([5, 1, 1211])
    """

    def __init__(
        self,
        input_shape,
        activation=torch.nn.LeakyReLU,
        lin_blocks=1,
        lin_neurons=512,
        out_neurons=1211,
    ):
        super().__init__(input_shape=input_shape)

        self.append(activation(), layer_name="act")
        self.append(sb.nnet.normalization.BatchNorm1d, layer_name="norm")

        if lin_blocks > 0:
            self.append(sb.nnet.containers.Sequential, layer_name="DNN")

        # Adding fully-connected layers
        for block_index in range(lin_blocks):
            block_name = f"block_{block_index}"
            self.DNN.append(
                sb.nnet.containers.Sequential, layer_name=block_name
            )
            self.DNN[block_name].append(
                sb.nnet.linear.Linear,
                n_neurons=lin_neurons,
                bias=True,
                layer_name="linear",
            )
            self.DNN[block_name].append(activation(), layer_name="act")
            self.DNN[block_name].append(
                sb.nnet.normalization.BatchNorm1d, layer_name="norm"
            )

        # Final Softmax classifier
        self.append(
            sb.nnet.linear.Linear, n_neurons=out_neurons, layer_name="out"
        )
        self.append(
            sb.nnet.activations.Softmax(apply_log=True), layer_name="softmax"
        )