spkrec-ecapa-voxceleb-kha / hyperparams.yaml
jefson08's picture
Upload hyperparams.yaml
3a86cb5 verified
raw
history blame
2.24 kB
# #################################
# Basic inference parameters for speaker-id. We have first a network that
# computes some embeddings. On the top of that, we employ a classifier.
#
# Author:
# * Mirco Ravanelli 2021
# #################################
# pretrain folders:
pretrained_path: jefson08/spkrec-ecapa-voxceleb-kha
# Model parameters
n_mels: 23
sample_rate: 16000
n_classes: 28 # In this case, we have 28 speakers
emb_dim: 512 # dimensionality of the embeddings
# Feature extraction
compute_features: !new:speechbrain.lobes.features.Fbank
n_mels: !ref <n_mels>
# Mean and std normalization of the input features
mean_var_norm: !new:speechbrain.processing.features.InputNormalization
norm_type: sentence
std_norm: False
# To design a custom model, either just edit the simple CustomModel
# class that's listed here, or replace this `!new` call with a line
# pointing to a different file you've defined.
embedding_model: !new:custom_model.Xvector
in_channels: !ref <n_mels>
activation: !name:torch.nn.LeakyReLU
tdnn_blocks: 5
tdnn_channels: [512, 512, 512, 512, 1500]
tdnn_kernel_sizes: [5, 3, 3, 1, 1]
tdnn_dilations: [1, 2, 3, 1, 1]
lin_neurons: !ref <emb_dim>
classifier: !new:custom_model.Classifier
input_shape: [null, null, !ref <emb_dim>]
activation: !name:torch.nn.LeakyReLU
lin_blocks: 1
lin_neurons: !ref <emb_dim>
out_neurons: !ref <n_classes>
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
# Objects in "modules" dict will have their parameters moved to the correct
# device, as well as having train()/eval() called on them by the Brain class.
modules:
compute_features: !ref <compute_features>
embedding_model: !ref <embedding_model>
classifier: !ref <classifier>
mean_var_norm: !ref <mean_var_norm>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
embedding_model: !ref <embedding_model>
classifier: !ref <classifier>
label_encoder: !ref <label_encoder>
paths:
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
classifier: !ref <pretrained_path>/classifier.ckpt
label_encoder: !ref <pretrained_path>/label_encoder.txt