--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5991 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1211 | 1.0 | 57 | 1.9967 | 0.4 | | 1.6311 | 2.0 | 114 | 1.5599 | 0.58 | | 1.2082 | 3.0 | 171 | 1.2194 | 0.72 | | 1.1853 | 4.0 | 228 | 1.0276 | 0.75 | | 0.7278 | 5.0 | 285 | 0.9232 | 0.78 | | 0.6999 | 6.0 | 342 | 0.7392 | 0.82 | | 0.4983 | 7.0 | 399 | 0.6779 | 0.84 | | 0.5142 | 8.0 | 456 | 0.6483 | 0.83 | | 0.417 | 9.0 | 513 | 0.6554 | 0.82 | | 0.3725 | 10.0 | 570 | 0.5991 | 0.83 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3