--- library_name: peft license: other base_model: microsoft/Phi-3-mini-4k-instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: lora results: [] --- # lora This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the flock_task5_tranning dataset. It achieves the following results on the evaluation set: - Loss: 0.0052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5231 | 2.5 | 10 | 1.6286 | | 1.4069 | 5.0 | 20 | 1.4773 | | 1.2518 | 7.5 | 30 | 1.3657 | | 1.3069 | 10.0 | 40 | 1.2441 | | 1.0816 | 12.5 | 50 | 1.0924 | | 1.0063 | 15.0 | 60 | 0.9201 | | 0.666 | 17.5 | 70 | 0.7236 | | 0.5723 | 20.0 | 80 | 0.5105 | | 0.3671 | 22.5 | 90 | 0.3136 | | 0.2108 | 25.0 | 100 | 0.1737 | | 0.1203 | 27.5 | 110 | 0.0830 | | 0.069 | 30.0 | 120 | 0.0397 | | 0.0233 | 32.5 | 130 | 0.0212 | | 0.0158 | 35.0 | 140 | 0.0129 | | 0.0104 | 37.5 | 150 | 0.0093 | | 0.0081 | 40.0 | 160 | 0.0076 | | 0.0073 | 42.5 | 170 | 0.0066 | | 0.0072 | 45.0 | 180 | 0.0060 | | 0.0062 | 47.5 | 190 | 0.0056 | | 0.0063 | 50.0 | 200 | 0.0054 | | 0.0068 | 52.5 | 210 | 0.0053 | | 0.0064 | 55.0 | 220 | 0.0052 | | 0.0061 | 57.5 | 230 | 0.0052 | | 0.0056 | 60.0 | 240 | 0.0052 | ### Framework versions - PEFT 0.12.0 - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0