--- language: - zh license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - formospeech/tat_asr_aligned model-index: - name: Whisper Tiny Taiwanese Simulated Android results: [] --- # Whisper Tiny Taiwanese Simulated Android This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set: - Loss: 0.7438 - Cer: 11.6466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1362 - training_steps: 13620 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.3611 | 0.9985 | 681 | 0.4700 | 20.9285 | | 0.2547 | 1.9971 | 1362 | 0.4463 | 15.1381 | | 0.1658 | 2.9956 | 2043 | 0.4418 | 13.8355 | | 0.1045 | 3.9941 | 2724 | 0.4723 | 13.4539 | | 0.0687 | 4.9927 | 3405 | 0.4987 | 13.4172 | | 0.0456 | 5.9912 | 4086 | 0.5397 | 13.2578 | | 0.0326 | 6.9897 | 4767 | 0.5761 | 12.9786 | | 0.0219 | 7.9883 | 5448 | 0.6007 | 13.0098 | | 0.0167 | 8.9868 | 6129 | 0.6061 | 12.7120 | | 0.0122 | 9.9853 | 6810 | 0.6446 | 12.8573 | | 0.0087 | 10.9839 | 7491 | 0.6544 | 12.7846 | | 0.0053 | 11.9824 | 8172 | 0.6783 | 12.3071 | | 0.0041 | 12.9809 | 8853 | 0.6960 | 12.3634 | | 0.002 | 13.9795 | 9534 | 0.7046 | 12.2334 | | 0.0012 | 14.9780 | 10215 | 0.7138 | 12.0635 | | 0.0004 | 15.9765 | 10896 | 0.7239 | 12.0304 | | 0.0002 | 16.9751 | 11577 | 0.7270 | 11.7646 | | 0.0001 | 17.9736 | 12258 | 0.7367 | 11.6746 | | 0.0001 | 18.9721 | 12939 | 0.7418 | 11.6619 | | 0.0001 | 19.9707 | 13620 | 0.7438 | 11.6466 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1