jethrowang commited on
Commit
85ddb6e
·
verified ·
1 Parent(s): bb96083

End of training

Browse files
Files changed (1) hide show
  1. README.md +18 -41
README.md CHANGED
@@ -7,22 +7,9 @@ tags:
7
  - generated_from_trainer
8
  datasets:
9
  - formospeech/tat_asr_aligned
10
- metrics:
11
- - wer
12
  model-index:
13
  - name: Whisper Tiny Taiwanese Condenser
14
- results:
15
- - task:
16
- name: Automatic Speech Recognition
17
- type: automatic-speech-recognition
18
- dataset:
19
- name: TAT ASR Aligned
20
- type: formospeech/tat_asr_aligned
21
- args: 'config: taiwanese, split: test'
22
- metrics:
23
- - name: Wer
24
- type: wer
25
- value: 50.65108143376739
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +19,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.0814
36
- - Wer: 50.6511
37
 
38
  ## Model description
39
 
@@ -52,40 +39,30 @@ More information needed
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
- - learning_rate: 0.001
56
  - train_batch_size: 64
57
  - eval_batch_size: 32
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
- - lr_scheduler_warmup_steps: 1362
62
- - training_steps: 13620
63
  - mixed_precision_training: Native AMP
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Wer |
68
- |:-------------:|:-------:|:-----:|:---------------:|:-------:|
69
- | 0.4229 | 0.9985 | 681 | 0.6344 | 65.8772 |
70
- | 0.4529 | 1.9971 | 1362 | 0.7311 | 71.3135 |
71
- | 0.3271 | 2.9956 | 2043 | 0.6324 | 64.7777 |
72
- | 0.2257 | 3.9941 | 2724 | 0.5510 | 58.4141 |
73
- | 0.1554 | 4.9927 | 3405 | 0.5350 | 57.6394 |
74
- | 0.122 | 5.9912 | 4086 | 0.5911 | 56.8148 |
75
- | 0.0935 | 6.9897 | 4767 | 0.6122 | 56.1179 |
76
- | 0.0718 | 7.9883 | 5448 | 0.6492 | 54.7158 |
77
- | 0.0588 | 8.9868 | 6129 | 0.6623 | 55.5599 |
78
- | 0.0466 | 9.9853 | 6810 | 0.6883 | 56.9481 |
79
- | 0.0349 | 10.9839 | 7491 | 0.7069 | 54.6770 |
80
- | 0.0298 | 11.9824 | 8172 | 0.7441 | 54.2272 |
81
- | 0.0215 | 12.9809 | 8853 | 0.7937 | 54.9491 |
82
- | 0.0141 | 13.9795 | 9534 | 0.8062 | 52.9278 |
83
- | 0.01 | 14.9780 | 10215 | 0.8717 | 53.2804 |
84
- | 0.0067 | 15.9765 | 10896 | 0.9279 | 52.6029 |
85
- | 0.0031 | 16.9751 | 11577 | 0.9783 | 52.0393 |
86
- | 0.0012 | 17.9736 | 12258 | 1.0311 | 50.6622 |
87
- | 0.0004 | 18.9721 | 12939 | 1.0574 | 50.7566 |
88
- | 0.0001 | 19.9707 | 13620 | 1.0814 | 50.6511 |
89
 
90
 
91
  ### Framework versions
 
7
  - generated_from_trainer
8
  datasets:
9
  - formospeech/tat_asr_aligned
 
 
10
  model-index:
11
  - name: Whisper Tiny Taiwanese Condenser
12
+ results: []
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
19
 
20
  This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6252
23
+ - Cer: 11.4109
24
 
25
  ## Model description
26
 
 
39
  ### Training hyperparameters
40
 
41
  The following hyperparameters were used during training:
42
+ - learning_rate: 0.0001
43
  - train_batch_size: 64
44
  - eval_batch_size: 32
45
  - seed: 42
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 681
49
+ - training_steps: 6810
50
  - mixed_precision_training: Native AMP
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
55
+ |:-------------:|:------:|:----:|:---------------:|:-------:|
56
+ | 0.3117 | 0.9985 | 681 | 0.4649 | 17.1248 |
57
+ | 0.1805 | 1.9971 | 1362 | 0.4360 | 13.6667 |
58
+ | 0.108 | 2.9956 | 2043 | 0.4497 | 13.4248 |
59
+ | 0.0648 | 3.9941 | 2724 | 0.4710 | 12.8500 |
60
+ | 0.0349 | 4.9927 | 3405 | 0.5276 | 12.7592 |
61
+ | 0.0192 | 5.9912 | 4086 | 0.5607 | 12.4186 |
62
+ | 0.0089 | 6.9897 | 4767 | 0.5911 | 12.1183 |
63
+ | 0.0035 | 7.9883 | 5448 | 0.6032 | 11.6608 |
64
+ | 0.0009 | 8.9868 | 6129 | 0.6198 | 11.5311 |
65
+ | 0.0005 | 9.9853 | 6810 | 0.6252 | 11.4109 |
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
  ### Framework versions