jethrowang
commited on
End of training
Browse files
README.md
CHANGED
@@ -7,22 +7,9 @@ tags:
|
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- formospeech/tat_asr_aligned
|
10 |
-
metrics:
|
11 |
-
- wer
|
12 |
model-index:
|
13 |
- name: Whisper Tiny Taiwanese Condenser
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
name: Automatic Speech Recognition
|
17 |
-
type: automatic-speech-recognition
|
18 |
-
dataset:
|
19 |
-
name: TAT ASR Aligned
|
20 |
-
type: formospeech/tat_asr_aligned
|
21 |
-
args: 'config: taiwanese, split: test'
|
22 |
-
metrics:
|
23 |
-
- name: Wer
|
24 |
-
type: wer
|
25 |
-
value: 50.65108143376739
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +19,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
-
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,40 +39,30 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 0.
|
56 |
- train_batch_size: 64
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- lr_scheduler_warmup_steps:
|
62 |
-
- training_steps:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
-
| Training Loss | Epoch
|
68 |
-
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.0349 | 10.9839 | 7491 | 0.7069 | 54.6770 |
|
80 |
-
| 0.0298 | 11.9824 | 8172 | 0.7441 | 54.2272 |
|
81 |
-
| 0.0215 | 12.9809 | 8853 | 0.7937 | 54.9491 |
|
82 |
-
| 0.0141 | 13.9795 | 9534 | 0.8062 | 52.9278 |
|
83 |
-
| 0.01 | 14.9780 | 10215 | 0.8717 | 53.2804 |
|
84 |
-
| 0.0067 | 15.9765 | 10896 | 0.9279 | 52.6029 |
|
85 |
-
| 0.0031 | 16.9751 | 11577 | 0.9783 | 52.0393 |
|
86 |
-
| 0.0012 | 17.9736 | 12258 | 1.0311 | 50.6622 |
|
87 |
-
| 0.0004 | 18.9721 | 12939 | 1.0574 | 50.7566 |
|
88 |
-
| 0.0001 | 19.9707 | 13620 | 1.0814 | 50.6511 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- formospeech/tat_asr_aligned
|
|
|
|
|
10 |
model-index:
|
11 |
- name: Whisper Tiny Taiwanese Condenser
|
12 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6252
|
23 |
+
- Cer: 11.4109
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
39 |
### Training hyperparameters
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0001
|
43 |
- train_batch_size: 64
|
44 |
- eval_batch_size: 32
|
45 |
- seed: 42
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 681
|
49 |
+
- training_steps: 6810
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
56 |
+
| 0.3117 | 0.9985 | 681 | 0.4649 | 17.1248 |
|
57 |
+
| 0.1805 | 1.9971 | 1362 | 0.4360 | 13.6667 |
|
58 |
+
| 0.108 | 2.9956 | 2043 | 0.4497 | 13.4248 |
|
59 |
+
| 0.0648 | 3.9941 | 2724 | 0.4710 | 12.8500 |
|
60 |
+
| 0.0349 | 4.9927 | 3405 | 0.5276 | 12.7592 |
|
61 |
+
| 0.0192 | 5.9912 | 4086 | 0.5607 | 12.4186 |
|
62 |
+
| 0.0089 | 6.9897 | 4767 | 0.5911 | 12.1183 |
|
63 |
+
| 0.0035 | 7.9883 | 5448 | 0.6032 | 11.6608 |
|
64 |
+
| 0.0009 | 8.9868 | 6129 | 0.6198 | 11.5311 |
|
65 |
+
| 0.0005 | 9.9853 | 6810 | 0.6252 | 11.4109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|