--- language: - zh license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - formospeech/tat_asr_aligned metrics: - wer model-index: - name: Whisper Tiny Taiwanese Condenser results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: TAT ASR Aligned type: formospeech/tat_asr_aligned args: 'config: taiwanese, split: test' metrics: - name: Wer type: wer value: 50.65108143376739 --- # Whisper Tiny Taiwanese Condenser This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set: - Loss: 1.0814 - Wer: 50.6511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1362 - training_steps: 13620 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.4229 | 0.9985 | 681 | 0.6344 | 65.8772 | | 0.4529 | 1.9971 | 1362 | 0.7311 | 71.3135 | | 0.3271 | 2.9956 | 2043 | 0.6324 | 64.7777 | | 0.2257 | 3.9941 | 2724 | 0.5510 | 58.4141 | | 0.1554 | 4.9927 | 3405 | 0.5350 | 57.6394 | | 0.122 | 5.9912 | 4086 | 0.5911 | 56.8148 | | 0.0935 | 6.9897 | 4767 | 0.6122 | 56.1179 | | 0.0718 | 7.9883 | 5448 | 0.6492 | 54.7158 | | 0.0588 | 8.9868 | 6129 | 0.6623 | 55.5599 | | 0.0466 | 9.9853 | 6810 | 0.6883 | 56.9481 | | 0.0349 | 10.9839 | 7491 | 0.7069 | 54.6770 | | 0.0298 | 11.9824 | 8172 | 0.7441 | 54.2272 | | 0.0215 | 12.9809 | 8853 | 0.7937 | 54.9491 | | 0.0141 | 13.9795 | 9534 | 0.8062 | 52.9278 | | 0.01 | 14.9780 | 10215 | 0.8717 | 53.2804 | | 0.0067 | 15.9765 | 10896 | 0.9279 | 52.6029 | | 0.0031 | 16.9751 | 11577 | 0.9783 | 52.0393 | | 0.0012 | 17.9736 | 12258 | 1.0311 | 50.6622 | | 0.0004 | 18.9721 | 12939 | 1.0574 | 50.7566 | | 0.0001 | 19.9707 | 13620 | 1.0814 | 50.6511 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1