llama3370b_101_19_lora_18 / running_log.txt
jgayed's picture
Upload folder using huggingface_hub
b578af0 verified
[INFO|2025-02-28 17:03:19] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json
[INFO|2025-02-28 17:03:19] configuration_utils.py:771 >> Model config LlamaConfig {
"_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 8192,
"initializer_range": 0.02,
"intermediate_size": 28672,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 64,
"num_hidden_layers": 80,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"vocab_size": 128256
}
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2050 >> loading file tokenizer.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer.json
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2050 >> loading file tokenizer.model from cache at None
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2050 >> loading file added_tokens.json from cache at None
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2050 >> loading file special_tokens_map.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/special_tokens_map.json
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2050 >> loading file tokenizer_config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer_config.json
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2050 >> loading file chat_template.jinja from cache at None
[INFO|2025-02-28 17:03:19] tokenization_utils_base.py:2313 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|2025-02-28 17:03:19] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json
[INFO|2025-02-28 17:03:19] configuration_utils.py:771 >> Model config LlamaConfig {
"_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 8192,
"initializer_range": 0.02,
"intermediate_size": 28672,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 64,
"num_hidden_layers": 80,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"vocab_size": 128256
}
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2050 >> loading file tokenizer.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer.json
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2050 >> loading file tokenizer.model from cache at None
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2050 >> loading file added_tokens.json from cache at None
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2050 >> loading file special_tokens_map.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/special_tokens_map.json
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2050 >> loading file tokenizer_config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/tokenizer_config.json
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2050 >> loading file chat_template.jinja from cache at None
[INFO|2025-02-28 17:03:20] tokenization_utils_base.py:2313 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|2025-02-28 17:03:20] logging.py:157 >> Add <|eot_id|>,<|eom_id|> to stop words.
[INFO|2025-02-28 17:03:20] logging.py:157 >> Loading dataset jgayed/ets10119...
[INFO|2025-02-28 17:03:21] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json
[INFO|2025-02-28 17:03:21] configuration_utils.py:771 >> Model config LlamaConfig {
"_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 8192,
"initializer_range": 0.02,
"intermediate_size": 28672,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 64,
"num_hidden_layers": 80,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"vocab_size": 128256
}
[INFO|2025-02-28 17:03:21] logging.py:157 >> Quantizing model to 4 bit with bitsandbytes.
[INFO|2025-02-28 17:03:21] modeling_utils.py:3982 >> loading weights file model.safetensors from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/model.safetensors.index.json
[INFO|2025-02-28 17:03:21] modeling_utils.py:1633 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
[INFO|2025-02-28 17:03:21] configuration_utils.py:1140 >> Generate config GenerationConfig {
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
]
}
[INFO|2025-02-28 17:03:45] modeling_utils.py:4970 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
[INFO|2025-02-28 17:03:45] modeling_utils.py:4978 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at meta-llama/Llama-3.3-70B-Instruct.
If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
[INFO|2025-02-28 17:03:45] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/generation_config.json
[INFO|2025-02-28 17:03:45] configuration_utils.py:1140 >> Generate config GenerationConfig {
"bos_token_id": 128000,
"do_sample": true,
"eos_token_id": [
128001,
128008,
128009
],
"temperature": 0.6,
"top_p": 0.9
}
[INFO|2025-02-28 17:03:45] logging.py:157 >> Gradient checkpointing enabled.
[INFO|2025-02-28 17:03:45] logging.py:157 >> Using torch SDPA for faster training and inference.
[INFO|2025-02-28 17:03:45] logging.py:157 >> Upcasting trainable params to float32.
[INFO|2025-02-28 17:03:45] logging.py:157 >> Fine-tuning method: LoRA
[INFO|2025-02-28 17:03:45] logging.py:157 >> Found linear modules: k_proj,up_proj,v_proj,down_proj,q_proj,o_proj,gate_proj
[INFO|2025-02-28 17:03:55] logging.py:157 >> trainable params: 207,093,760 || all params: 70,760,800,256 || trainable%: 0.2927
[INFO|2025-02-28 17:03:55] trainer.py:746 >> Using auto half precision backend
[WARNING|2025-02-28 17:03:55] trainer.py:781 >> No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
[INFO|2025-02-28 17:03:55] trainer.py:2405 >> ***** Running training *****
[INFO|2025-02-28 17:03:55] trainer.py:2406 >> Num examples = 101
[INFO|2025-02-28 17:03:55] trainer.py:2407 >> Num Epochs = 3
[INFO|2025-02-28 17:03:55] trainer.py:2408 >> Instantaneous batch size per device = 1
[INFO|2025-02-28 17:03:55] trainer.py:2411 >> Total train batch size (w. parallel, distributed & accumulation) = 8
[INFO|2025-02-28 17:03:55] trainer.py:2412 >> Gradient Accumulation steps = 8
[INFO|2025-02-28 17:03:55] trainer.py:2413 >> Total optimization steps = 36
[INFO|2025-02-28 17:03:55] trainer.py:2414 >> Number of trainable parameters = 207,093,760
[INFO|2025-02-28 17:04:54] logging.py:157 >> {'loss': 10.5953, 'learning_rate': 4.7658e-05, 'epoch': 0.40, 'throughput': 593.47}
[INFO|2025-02-28 17:05:55] logging.py:157 >> {'loss': 2.1097, 'learning_rate': 4.1070e-05, 'epoch': 0.79, 'throughput': 598.49}
[INFO|2025-02-28 17:06:49] logging.py:157 >> {'loss': 0.4752, 'learning_rate': 3.1470e-05, 'epoch': 1.16, 'throughput': 595.11}
[INFO|2025-02-28 17:07:49] logging.py:157 >> {'loss': 0.4311, 'learning_rate': 2.0659e-05, 'epoch': 1.55, 'throughput': 596.05}
[INFO|2025-02-28 17:08:49] logging.py:157 >> {'loss': 0.4116, 'learning_rate': 1.0661e-05, 'epoch': 1.95, 'throughput': 597.38}
[INFO|2025-02-28 17:09:44] logging.py:157 >> {'loss': 0.3330, 'learning_rate': 3.3494e-06, 'epoch': 2.32, 'throughput': 596.59}
[INFO|2025-02-28 17:10:44] logging.py:157 >> {'loss': 0.3408, 'learning_rate': 9.5133e-08, 'epoch': 2.71, 'throughput': 596.82}
[INFO|2025-02-28 17:10:55] trainer.py:3942 >> Saving model checkpoint to saves/Llama-3.3-70B-Instruct/lora/test/checkpoint-36
[INFO|2025-02-28 17:10:56] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json
[INFO|2025-02-28 17:10:56] configuration_utils.py:771 >> Model config LlamaConfig {
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 8192,
"initializer_range": 0.02,
"intermediate_size": 28672,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 64,
"num_hidden_layers": 80,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"vocab_size": 128256
}
[INFO|2025-02-28 17:10:56] tokenization_utils_base.py:2500 >> tokenizer config file saved in saves/Llama-3.3-70B-Instruct/lora/test/checkpoint-36/tokenizer_config.json
[INFO|2025-02-28 17:10:56] tokenization_utils_base.py:2509 >> Special tokens file saved in saves/Llama-3.3-70B-Instruct/lora/test/checkpoint-36/special_tokens_map.json
[INFO|2025-02-28 17:10:58] trainer.py:2657 >>
Training completed. Do not forget to share your model on huggingface.co/models =)
[INFO|2025-02-28 17:10:58] trainer.py:3942 >> Saving model checkpoint to saves/Llama-3.3-70B-Instruct/lora/test
[INFO|2025-02-28 17:10:58] configuration_utils.py:699 >> loading configuration file config.json from cache at /workspace/hf_home/hub/models--meta-llama--Llama-3.3-70B-Instruct/snapshots/6f6073b423013f6a7d4d9f39144961bfbfbc386b/config.json
[INFO|2025-02-28 17:10:58] configuration_utils.py:771 >> Model config LlamaConfig {
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 8192,
"initializer_range": 0.02,
"intermediate_size": 28672,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 64,
"num_hidden_layers": 80,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 8.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.49.0",
"use_cache": true,
"vocab_size": 128256
}
[INFO|2025-02-28 17:10:59] tokenization_utils_base.py:2500 >> tokenizer config file saved in saves/Llama-3.3-70B-Instruct/lora/test/tokenizer_config.json
[INFO|2025-02-28 17:10:59] tokenization_utils_base.py:2509 >> Special tokens file saved in saves/Llama-3.3-70B-Instruct/lora/test/special_tokens_map.json
[WARNING|2025-02-28 17:10:59] logging.py:162 >> No metric eval_loss to plot.
[WARNING|2025-02-28 17:10:59] logging.py:162 >> No metric eval_accuracy to plot.
[INFO|2025-02-28 17:10:59] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}