File size: 6,176 Bytes
728d601 202528e 728d601 202528e 728d601 202528e 728d601 202528e 728d601 202528e 728d601 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: chinese-address-ner
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.975825946817083
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chinese-address-ner
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1080
- Precision: 0.9664
- Recall: 0.9774
- F1: 0.9719
- Accuracy: 0.9758
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.5055 | 1.0 | 7 | 1.6719 | 0.1977 | 0.2604 | 0.2248 | 0.5649 |
| 1.837 | 2.0 | 14 | 1.0719 | 0.4676 | 0.6 | 0.5256 | 0.7421 |
| 1.0661 | 3.0 | 21 | 0.7306 | 0.6266 | 0.7472 | 0.6816 | 0.8106 |
| 0.8373 | 4.0 | 28 | 0.5197 | 0.6456 | 0.8113 | 0.7191 | 0.8614 |
| 0.522 | 5.0 | 35 | 0.3830 | 0.7667 | 0.8679 | 0.8142 | 0.9001 |
| 0.4295 | 6.0 | 42 | 0.3104 | 0.8138 | 0.8906 | 0.8505 | 0.9178 |
| 0.3483 | 7.0 | 49 | 0.2453 | 0.8462 | 0.9132 | 0.8784 | 0.9404 |
| 0.2471 | 8.0 | 56 | 0.2081 | 0.8403 | 0.9132 | 0.8752 | 0.9428 |
| 0.2299 | 9.0 | 63 | 0.1979 | 0.8419 | 0.9245 | 0.8813 | 0.9420 |
| 0.1761 | 10.0 | 70 | 0.1823 | 0.8830 | 0.9396 | 0.9104 | 0.9500 |
| 0.1434 | 11.0 | 77 | 0.1480 | 0.9036 | 0.9547 | 0.9284 | 0.9629 |
| 0.134 | 12.0 | 84 | 0.1341 | 0.9173 | 0.9623 | 0.9392 | 0.9678 |
| 0.128 | 13.0 | 91 | 0.1365 | 0.9375 | 0.9623 | 0.9497 | 0.9694 |
| 0.0824 | 14.0 | 98 | 0.1159 | 0.9557 | 0.9774 | 0.9664 | 0.9734 |
| 0.0744 | 15.0 | 105 | 0.1092 | 0.9591 | 0.9736 | 0.9663 | 0.9766 |
| 0.0569 | 16.0 | 112 | 0.1117 | 0.9556 | 0.9736 | 0.9645 | 0.9742 |
| 0.0559 | 17.0 | 119 | 0.1040 | 0.9628 | 0.9774 | 0.9700 | 0.9790 |
| 0.0456 | 18.0 | 126 | 0.1052 | 0.9593 | 0.9774 | 0.9682 | 0.9782 |
| 0.0405 | 19.0 | 133 | 0.1133 | 0.9590 | 0.9698 | 0.9644 | 0.9718 |
| 0.0315 | 20.0 | 140 | 0.1060 | 0.9591 | 0.9736 | 0.9663 | 0.9750 |
| 0.0262 | 21.0 | 147 | 0.1087 | 0.9554 | 0.9698 | 0.9625 | 0.9718 |
| 0.0338 | 22.0 | 154 | 0.1183 | 0.9625 | 0.9698 | 0.9662 | 0.9726 |
| 0.0225 | 23.0 | 161 | 0.1080 | 0.9664 | 0.9774 | 0.9719 | 0.9758 |
| 0.028 | 24.0 | 168 | 0.1057 | 0.9591 | 0.9736 | 0.9663 | 0.9742 |
| 0.0202 | 25.0 | 175 | 0.1062 | 0.9628 | 0.9774 | 0.9700 | 0.9766 |
| 0.0168 | 26.0 | 182 | 0.1097 | 0.9664 | 0.9774 | 0.9719 | 0.9758 |
| 0.0173 | 27.0 | 189 | 0.1093 | 0.9628 | 0.9774 | 0.9700 | 0.9774 |
| 0.0151 | 28.0 | 196 | 0.1162 | 0.9628 | 0.9774 | 0.9700 | 0.9766 |
| 0.0135 | 29.0 | 203 | 0.1126 | 0.9483 | 0.9698 | 0.9590 | 0.9758 |
| 0.0179 | 30.0 | 210 | 0.1100 | 0.9449 | 0.9698 | 0.9572 | 0.9774 |
| 0.0161 | 31.0 | 217 | 0.1098 | 0.9449 | 0.9698 | 0.9572 | 0.9766 |
| 0.0158 | 32.0 | 224 | 0.1191 | 0.9483 | 0.9698 | 0.9590 | 0.9734 |
| 0.0151 | 33.0 | 231 | 0.1058 | 0.9483 | 0.9698 | 0.9590 | 0.9750 |
| 0.0121 | 34.0 | 238 | 0.0990 | 0.9593 | 0.9774 | 0.9682 | 0.9790 |
| 0.0092 | 35.0 | 245 | 0.1128 | 0.9519 | 0.9698 | 0.9607 | 0.9774 |
| 0.0097 | 36.0 | 252 | 0.1181 | 0.9627 | 0.9736 | 0.9681 | 0.9766 |
| 0.0118 | 37.0 | 259 | 0.1185 | 0.9591 | 0.9736 | 0.9663 | 0.9782 |
| 0.0118 | 38.0 | 266 | 0.1021 | 0.9557 | 0.9774 | 0.9664 | 0.9823 |
| 0.0099 | 39.0 | 273 | 0.1000 | 0.9559 | 0.9811 | 0.9683 | 0.9815 |
| 0.0102 | 40.0 | 280 | 0.1025 | 0.9559 | 0.9811 | 0.9683 | 0.9815 |
| 0.0068 | 41.0 | 287 | 0.1080 | 0.9522 | 0.9774 | 0.9646 | 0.9807 |
| 0.0105 | 42.0 | 294 | 0.1157 | 0.9449 | 0.9698 | 0.9572 | 0.9766 |
| 0.0083 | 43.0 | 301 | 0.1207 | 0.9380 | 0.9698 | 0.9536 | 0.9766 |
| 0.0077 | 44.0 | 308 | 0.1208 | 0.9483 | 0.9698 | 0.9590 | 0.9766 |
| 0.0077 | 45.0 | 315 | 0.1176 | 0.9483 | 0.9698 | 0.9590 | 0.9774 |
| 0.0071 | 46.0 | 322 | 0.1137 | 0.9483 | 0.9698 | 0.9590 | 0.9790 |
| 0.0075 | 47.0 | 329 | 0.1144 | 0.9483 | 0.9698 | 0.9590 | 0.9782 |
| 0.0084 | 48.0 | 336 | 0.1198 | 0.9483 | 0.9698 | 0.9590 | 0.9766 |
| 0.0103 | 49.0 | 343 | 0.1217 | 0.9519 | 0.9698 | 0.9607 | 0.9766 |
| 0.0087 | 50.0 | 350 | 0.1230 | 0.9519 | 0.9698 | 0.9607 | 0.9766 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.8.0
- Datasets 1.9.0
- Tokenizers 0.10.3
|