--- model-index: - name: adult-content-classifier-image results: [] pipeline_tag: image-classification tags: - adult-content-classifier-image - classifier - adult - adult-content - image-classifier - image - classifier #widget: # - text: "https://img.shopping.friday.tw/images/product/265/7951356/7951356_3_1.webp?172830" # src: "https://img.shopping.friday.tw/images/product/265/7951356/7951356_3_1.webp?172830" # example_title: "regular_一般商品圖片" # - text: "https://img.shopping.friday.tw/images/product/259/7782883/7782883_3_1.webp?153546" # src: "https://img.shopping.friday.tw/images/product/259/7782883/7782883_3_1.webp?153546" # example_title: "adult_成人商品圖片" --- # adult-content-identify-image (text version [here](https://huggingface.co/jiechau/adult-content-identify-text) 文字版本請參考 [這裡](https://huggingface.co/jiechau/adult-content-identify-text)) Determine whether online sales products are adult content. Input: image content, Output results: 0 Unknown, 1 Adult Content, 2 General Merchandise. 判斷網路銷售商品是否屬於成人內容。輸入圖片內容,輸出結果: 0 未知, 1 成人內容, 2 一般商品。 # use transformers pipeline ```python from transformers import pipeline, AutoConfig pipe = pipeline("image-classification", model="jiechau/adult-content-identify-image") config = AutoConfig.from_pretrained("jiechau/adult-content-identify-image") label2id = config.label2id id2label = config.id2label q = 'https://xxx.xxx.xxx/images/xxx/xxx.webp' q = 'https://xxx.xxx.xxx/images/xxx/xxx.jpg' result = pipe(q) print(result) print(label2id[result[0]['label']]) # [{'label': 'adult_成人商品', 'score': 0.7516837120056152}, {'label': 'regular_一般商品', 'score': 0.2475457787513733}, {'label': 'unknown', 'score': 0.0007705678581260145}] # 1 ```