File size: 1,743 Bytes
3d238d2 5dfbadc f5df8e8 5dfbadc f5df8e8 2871429 3d238d2 5dfbadc 985ba75 f5df8e8 e757b3c f5df8e8 e757b3c f5df8e8 5dfbadc f5df8e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
tags:
- generated_from_keras_callback
model-index:
- name: adult-content-classifier-text
results: []
pipeline_tag: text-classification
widget:
- text: 情趣睡衣 性感睡衣 角色扮演 惹火 緊身連身 漆皮膠衣 黑 L
example_title: adult_成人商品標題
- text: 男平織運動外套-立領外套 慢跑 路跑 藍黑螢光黃 L
example_title: regular_一般商品標題
- text: 'Passionate Embrace: Cross-Laced Sexy Silky Lingerie Sleepwear, White'
example_title: adult_product
- text: >-
Men's Plain Weave Sports Jacket - Stand Collar Jacket for Jogging and
Running, Blue-Black-Fluorescent Yellow, Size L
example_title: regular_product
license: mit
language:
- en
- zh
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# adult-content-identify-text
Determine whether online sales products are adult content. Input: product title or description, Output results: 0 Unknown, 1 Adult Content, 2 General Merchandise.
判斷網路銷售商品是否屬於成人內容。輸入: 商品名稱文字,輸出結果: 0 未知, 1 成人內容, 2 一般商品。
# use transformers pipeline
```python
from transformers import pipeline
pipe = pipeline("text-classification", model="jiechau/adult-content-classifier")
#q = '男平織運動外套-立領外套 慢跑 路跑 藍黑螢光黃 L'
q = '情趣睡衣 性感睡衣 角色扮演 惹火 緊身連身 漆皮膠衣 黑 L'
result = pipe(q)
print(result)
# [{'label': 'adult_成人商品', 'score': 0.9994813799858093}]
```
### Framework versions
- Transformers 4.37.1
- TensorFlow 2.15.0
- Datasets 2.17.0
- Tokenizers 0.15.1 |