import math import struct import inspect import time from .LMConfig import LMConfig from typing import Any, Optional, Tuple, List import numpy as np import torch import torch.nn.functional as F from torch import nn from transformers import PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): return self.weight * (x.float() * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)).type_as(x) def precompute_pos_cis(dim: int, end: int, theta: float = 1e4): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) # type: ignore freqs = torch.outer(t, freqs).float() # type: ignore pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return pos_cis def apply_rotary_emb(xq, xk, pos_cis): def unite_shape(pos_cis, x): ndim = x.ndim assert 0 <= 1 < ndim assert pos_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return pos_cis.view(*shape) xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) pos_cis = unite_shape(pos_cis, xq_) xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3) xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" bs, slen, n_kv_heads, head_dim = x.shape if n_rep == 1: return x return ( x[:, :, :, None, :] .expand(bs, slen, n_kv_heads, n_rep, head_dim) .reshape(bs, slen, n_kv_heads * n_rep, head_dim) ) class Attention(nn.Module): def __init__(self, args: LMConfig): super().__init__() self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads assert args.n_heads % self.n_kv_heads == 0 self.n_local_heads = args.n_heads self.n_local_kv_heads = self.n_kv_heads self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.dim // args.n_heads self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) self.attn_dropout = nn.Dropout(args.dropout) self.resid_dropout = nn.Dropout(args.dropout) self.dropout = args.dropout self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) mask = torch.triu(mask, diagonal=1) self.register_buffer("mask", mask, persistent=False) def forward(self, x: torch.Tensor, pos_cis: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, use_cache=False): bsz, seq_len, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, pos_cis) # kv_cache实现 if past_key_value is not None: xk = torch.cat([past_key_value[0], xk], dim=1) xv = torch.cat([past_key_value[1], xv], dim=1) past_kv = (xk, xv) if use_cache else None xq, xk, xv = ( xq.transpose(1, 2), repeat_kv(xk, self.n_rep).transpose(1, 2), repeat_kv(xv, self.n_rep).transpose(1, 2) ) if self.flash and seq_len != 1: dropout_p = self.dropout if self.training else 0.0 output = F.scaled_dot_product_attention( xq, xk, xv, attn_mask=None, dropout_p=dropout_p, is_causal=True ) else: scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) scores += self.mask[:, :, :seq_len, :seq_len] scores = F.softmax(scores.float(), dim=-1).type_as(xq) scores = self.attn_dropout(scores) output = scores @ xv output = output.transpose(1, 2).reshape(bsz, seq_len, -1) output = self.resid_dropout(self.wo(output)) return output, past_kv class FeedForward(nn.Module): def __init__(self, config: LMConfig): super().__init__() if config.hidden_dim is None: hidden_dim = 4 * config.dim hidden_dim = int(2 * hidden_dim / 3) config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of) self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False) self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False) self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False) self.dropout = nn.Dropout(config.dropout) def forward(self, x): return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) class MoEGate(nn.Module): def __init__(self, config: LMConfig): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.scoring_func = config.scoring_func self.alpha = config.aux_loss_alpha self.seq_aux = config.seq_aux self.norm_topk_prob = config.norm_topk_prob self.gating_dim = config.dim self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) self.reset_parameters() def reset_parameters(self) -> None: import torch.nn.init as init init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape hidden_states = hidden_states.view(-1, h) logits = F.linear(hidden_states, self.weight, None) if self.scoring_func == 'softmax': scores = logits.softmax(dim=-1) else: raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator if self.training and self.alpha > 0.0: scores_for_aux = scores aux_topk = self.top_k topk_idx_for_aux_loss = topk_idx.view(bsz, -1) if self.seq_aux: scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( seq_len * aux_topk / self.n_routed_experts) aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha else: mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) ce = mask_ce.float().mean(0) Pi = scores_for_aux.mean(0) fi = ce * self.n_routed_experts aux_loss = (Pi * fi).sum() * self.alpha else: aux_loss = 0 return topk_idx, topk_weight, aux_loss class MOEFeedForward(nn.Module): def __init__(self, config: LMConfig): super().__init__() self.config = config self.experts = nn.ModuleList([ FeedForward(config) for _ in range(config.n_routed_experts) ]) self.gate = MoEGate(config) if config.n_shared_experts is not None: self.shared_experts = FeedForward(config) def forward(self, x): identity = x orig_shape = x.shape bsz, seq_len, _ = x.shape # 使用门控机制选择专家 topk_idx, topk_weight, aux_loss = self.gate(x) x = x.view(-1, x.shape[-1]) flat_topk_idx = topk_idx.view(-1) if self.training: # 训练模式下,重复输入数据 x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) y = torch.empty_like(x, dtype=torch.float16) for i, expert in enumerate(self.experts): y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致 y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.view(*orig_shape) else: # 推理模式下,只选择最优专家 y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) if self.config.n_shared_experts is not None: y = y + self.shared_experts(identity) self.aux_loss = aux_loss return y @torch.no_grad() def moe_infer(self, x, flat_expert_indices, flat_expert_weights): expert_cache = torch.zeros_like(x) idxs = flat_expert_indices.argsort() tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) token_idxs = idxs // self.config.num_experts_per_tok # 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52] # 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] # 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理...... for i, end_idx in enumerate(tokens_per_expert): start_idx = 0 if i == 0 else tokens_per_expert[i - 1] if start_idx == end_idx: continue expert = self.experts[i] exp_token_idx = token_idxs[start_idx:end_idx] expert_tokens = x[exp_token_idx] expert_out = expert(expert_tokens).to(expert_cache.dtype) expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) # 使用 scatter_add_ 进行 sum 操作 expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) return expert_cache class MiniMindBlock(nn.Module): def __init__(self, layer_id: int, config: LMConfig): super().__init__() self.n_heads = config.n_heads self.dim = config.dim self.head_dim = config.dim // config.n_heads self.attention = Attention(config) self.layer_id = layer_id self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config) def forward(self, x, pos_cis, past_key_value=None, use_cache=False): h_attn, past_kv = self.attention( self.attention_norm(x), pos_cis, past_key_value=past_key_value, use_cache=use_cache ) h = x + h_attn out = h + self.feed_forward(self.ffn_norm(h)) return out, past_kv class MiniMindLM(PreTrainedModel): config_class = LMConfig def __init__(self, params: LMConfig = None): self.params = params or LMConfig() super().__init__(self.params) self.vocab_size, self.n_layers = params.vocab_size, params.n_layers self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) self.dropout = nn.Dropout(params.dropout) self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)]) self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.output = nn.Linear(params.dim, params.vocab_size, bias=False) self.tok_embeddings.weight = self.output.weight self.register_buffer("pos_cis", precompute_pos_cis(params.dim // params.n_heads, params.max_seq_len, theta=params.rope_theta), persistent=False) self.OUT = CausalLMOutputWithPast() def forward(self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, **args): past_key_values = past_key_values or [None] * len(self.layers) start_pos = args.get('start_pos', 0) h = self.dropout(self.tok_embeddings(input_ids)) pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)] past_kvs = [] for l, layer in enumerate(self.layers): h, past_kv = layer( h, pos_cis, past_key_value=past_key_values[l], use_cache=use_cache ) past_kvs.append(past_kv) logits = self.output(self.norm(h)) aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward)) self.OUT.__setitem__('logits', logits) self.OUT.__setitem__('aux_loss', aux_loss) self.OUT.__setitem__('past_key_values', past_kvs) return self.OUT @torch.inference_mode() def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90, stream=False, rp=1., use_cache=True, pad_token_id=0, **args): # 流式生成 if stream: return self._generate_stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache) # 直接生成 generated = [] for i in range(input_ids.size(0)): non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0) out = self._generate_stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache) tokens_list = [tokens[:, -1:] for tokens in out] gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad full_sequence = torch.cat([non_pad, gen], dim=-1) generated.append(full_sequence) max_length = max(seq.size(1) for seq in generated) generated = [ torch.cat( [seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)], dim=-1) for seq in generated ] return torch.cat(generated, dim=0) def _generate_stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args): start, first_seq, past_kvs = input_ids.shape[1], True, None while input_ids.shape[1] < max_new_tokens - 1: if first_seq or not use_cache: out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache), False else: out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache, start_pos=input_ids.shape[1] - 1) logits, past_kvs = out.logits[:, -1, :], out.past_key_values logits[:, list(set(input_ids.tolist()[0]))] /= rp logits /= (temperature + 1e-9) if top_p is not None and top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) sorted_probs = F.softmax(sorted_logits, dim=-1) cumulative_probs = torch.cumsum(sorted_probs, dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = False indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = -float('Inf') input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) input_ids = torch.cat((input_ids, input_ids_next), dim=1) yield input_ids[:, start:] if input_ids_next.item() == eos_token_id: break