Update README.md
Browse files
README.md
CHANGED
@@ -1,58 +1,16 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
-
|
14 |
-
# lion-32bit_FA2_neftune_5_leaderboard_inst_v1.3_dedup_KoSOLAR-10.7B-v0.2_L1024
|
15 |
-
|
16 |
-
This model is a fine-tuned version of [yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2) on an unknown dataset.
|
17 |
-
|
18 |
-
## Model description
|
19 |
-
|
20 |
-
More information needed
|
21 |
-
|
22 |
-
## Intended uses & limitations
|
23 |
-
|
24 |
-
More information needed
|
25 |
-
|
26 |
-
## Training and evaluation data
|
27 |
-
|
28 |
-
More information needed
|
29 |
-
|
30 |
-
## Training procedure
|
31 |
-
|
32 |
-
### Training hyperparameters
|
33 |
-
|
34 |
-
The following hyperparameters were used during training:
|
35 |
-
- learning_rate: 1e-06
|
36 |
-
- train_batch_size: 2
|
37 |
-
- eval_batch_size: 8
|
38 |
-
- seed: 42
|
39 |
-
- distributed_type: multi-GPU
|
40 |
-
- num_devices: 6
|
41 |
-
- gradient_accumulation_steps: 16
|
42 |
-
- total_train_batch_size: 192
|
43 |
-
- total_eval_batch_size: 48
|
44 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
-
- lr_scheduler_type: cosine
|
46 |
-
- lr_scheduler_warmup_ratio: 0.03
|
47 |
-
- num_epochs: 3
|
48 |
-
|
49 |
-
### Training results
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
### Framework versions
|
54 |
-
|
55 |
-
- Transformers 4.35.2
|
56 |
-
- Pytorch 2.0.1
|
57 |
-
- Datasets 2.15.0
|
58 |
-
- Tokenizers 0.15.0
|
|
|
1 |
+
Model
|
2 |
+
base_model : yanolja/KoSOLAR-10.7B-v0.2
|
3 |
+
|
4 |
+
Dataset
|
5 |
+
공개 데이터 수집
|
6 |
+
Deduplicating Training Data Makes Language Models Better 알고리즘 활용
|
7 |
+
Code
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
import torch
|
10 |
+
|
11 |
+
model_name = "jingyeom/SOLAR_KO_1.3_deup"
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
model_name,
|
14 |
+
)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|