End of training
Browse files- README.md +24 -23
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,7 +52,7 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
@@ -60,31 +60,32 @@ The following hyperparameters were used during training:
|
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
- num_epochs: 15
|
|
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 2.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
|
|
72 |
-
|
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
-
- Transformers 4.
|
88 |
-
- Pytorch 2.
|
89 |
-
- Datasets 2.
|
90 |
-
- Tokenizers 0.
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.81
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6504
|
36 |
+
- Accuracy: 0.81
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-05
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
|
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
- num_epochs: 15
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.2428 | 1.0 | 113 | 2.1981 | 0.35 |
|
70 |
+
| 1.7527 | 2.0 | 226 | 1.7611 | 0.55 |
|
71 |
+
| 1.6002 | 3.0 | 339 | 1.4516 | 0.65 |
|
72 |
+
| 1.2101 | 4.0 | 452 | 1.2245 | 0.7 |
|
73 |
+
| 1.1006 | 5.0 | 565 | 1.0758 | 0.73 |
|
74 |
+
| 0.9583 | 6.0 | 678 | 0.9477 | 0.76 |
|
75 |
+
| 0.8705 | 7.0 | 791 | 0.8907 | 0.77 |
|
76 |
+
| 0.6892 | 8.0 | 904 | 0.8438 | 0.75 |
|
77 |
+
| 0.6141 | 9.0 | 1017 | 0.7574 | 0.79 |
|
78 |
+
| 0.5614 | 10.0 | 1130 | 0.7300 | 0.81 |
|
79 |
+
| 0.5347 | 11.0 | 1243 | 0.6830 | 0.8 |
|
80 |
+
| 0.5106 | 12.0 | 1356 | 0.7286 | 0.81 |
|
81 |
+
| 0.4662 | 13.0 | 1469 | 0.6701 | 0.8 |
|
82 |
+
| 0.6223 | 14.0 | 1582 | 0.6728 | 0.8 |
|
83 |
+
| 0.3604 | 15.0 | 1695 | 0.6504 | 0.81 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.40.0
|
89 |
+
- Pytorch 2.2.1+cu121
|
90 |
+
- Datasets 2.19.0
|
91 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c9045f06b3c0152a57e1d02a649b2b78e65a39581931a1cca5d64860c9d1f06
|
3 |
size 94771728
|