--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.72 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.3187 - Accuracy: 0.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.2889 | 0.9912 | 28 | 2.2613 | 0.38 | | 2.1553 | 1.9823 | 56 | 2.0953 | 0.56 | | 1.9626 | 2.9735 | 84 | 1.8820 | 0.54 | | 1.7839 | 4.0 | 113 | 1.7308 | 0.61 | | 1.6749 | 4.9912 | 141 | 1.5920 | 0.64 | | 1.5595 | 5.9823 | 169 | 1.5004 | 0.68 | | 1.5266 | 6.9735 | 197 | 1.4368 | 0.68 | | 1.4459 | 8.0 | 226 | 1.3776 | 0.71 | | 1.4152 | 8.9912 | 254 | 1.3481 | 0.71 | | 1.3766 | 9.9823 | 282 | 1.3242 | 0.72 | | 1.3682 | 10.9027 | 308 | 1.3187 | 0.72 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1