File size: 2,161 Bytes
82969c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-13f-reports
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-13f-reports
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5998
- Rouge1: 0.6865
- Rouge2: 0.6132
- Rougel: 0.6746
- Rougelsum: 0.675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.6234 | 1.0 | 126 | 1.1515 | 0.5933 | 0.497 | 0.5686 | 0.5688 |
| 1.5259 | 2.0 | 252 | 0.8439 | 0.6516 | 0.5674 | 0.6349 | 0.6357 |
| 1.2123 | 3.0 | 378 | 0.7462 | 0.661 | 0.5832 | 0.6474 | 0.6478 |
| 0.9923 | 4.0 | 504 | 0.6930 | 0.6674 | 0.5869 | 0.6534 | 0.6544 |
| 0.8811 | 5.0 | 630 | 0.6358 | 0.6747 | 0.595 | 0.662 | 0.6619 |
| 0.7831 | 6.0 | 756 | 0.6148 | 0.686 | 0.6105 | 0.6739 | 0.6741 |
| 0.7908 | 7.0 | 882 | 0.6011 | 0.6871 | 0.6132 | 0.6752 | 0.6755 |
| 0.7525 | 8.0 | 1008 | 0.5998 | 0.6865 | 0.6132 | 0.6746 | 0.675 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|