File size: 1,889 Bytes
25b94a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.1
tags:
- generated_from_trainer
model-index:
- name: Mistral_ET_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral_ET_1

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7456

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5079        | 0.41  | 100  | 1.6764          |
| 1.3602        | 0.82  | 200  | 1.1685          |
| 1.0132        | 1.23  | 300  | 0.9737          |
| 0.8592        | 1.65  | 400  | 0.8837          |
| 0.7742        | 2.06  | 500  | 0.8322          |
| 0.6621        | 2.47  | 600  | 0.7871          |
| 0.6402        | 2.88  | 700  | 0.7554          |
| 0.5713        | 3.29  | 800  | 0.7530          |
| 0.5468        | 3.7   | 900  | 0.7472          |
| 0.5542        | 4.12  | 1000 | 0.7456          |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0