File size: 3,065 Bytes
899903d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v2-atco2-asr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v2-atco2-asr
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7915
- Wer: 18.7722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2800
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1333 | 3.57 | 100 | 0.5298 | 21.8861 |
| 0.0338 | 7.14 | 200 | 0.5430 | 18.8167 |
| 0.0132 | 10.71 | 300 | 0.5830 | 17.9270 |
| 0.0067 | 14.29 | 400 | 0.6011 | 17.6157 |
| 0.0009 | 17.86 | 500 | 0.6582 | 18.8167 |
| 0.0004 | 21.43 | 600 | 0.6743 | 18.7722 |
| 0.0003 | 25.0 | 700 | 0.6919 | 18.4609 |
| 0.0004 | 28.57 | 800 | 0.6943 | 26.6459 |
| 0.0004 | 32.14 | 900 | 0.7090 | 18.5053 |
| 0.0002 | 35.71 | 1000 | 0.7212 | 18.8167 |
| 0.0001 | 39.29 | 1100 | 0.7305 | 18.8612 |
| 0.0001 | 42.86 | 1200 | 0.7383 | 18.6388 |
| 0.0001 | 46.43 | 1300 | 0.7451 | 18.5498 |
| 0.0001 | 50.0 | 1400 | 0.7515 | 18.5498 |
| 0.0001 | 53.57 | 1500 | 0.7573 | 18.5498 |
| 0.0001 | 57.14 | 1600 | 0.7622 | 18.5943 |
| 0.0001 | 60.71 | 1700 | 0.7666 | 18.5943 |
| 0.0001 | 64.29 | 1800 | 0.7705 | 18.5498 |
| 0.0001 | 67.86 | 1900 | 0.7744 | 18.6833 |
| 0.0001 | 71.43 | 2000 | 0.7778 | 18.6833 |
| 0.0001 | 75.0 | 2100 | 0.7808 | 18.7278 |
| 0.0001 | 78.57 | 2200 | 0.7837 | 18.6833 |
| 0.0001 | 82.14 | 2300 | 0.7856 | 18.6388 |
| 0.0001 | 85.71 | 2400 | 0.7881 | 18.6833 |
| 0.0001 | 89.29 | 2500 | 0.7896 | 18.6388 |
| 0.0001 | 92.86 | 2600 | 0.7905 | 18.7278 |
| 0.0001 | 96.43 | 2700 | 0.7915 | 18.8167 |
| 0.0001 | 100.0 | 2800 | 0.7915 | 18.7722 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|