File size: 2,173 Bytes
9f27d33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f529912
9f27d33
f529912
 
9f27d33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f529912
 
 
9f27d33
 
f529912
 
9f27d33
 
 
f529912
 
 
 
 
 
 
 
 
 
 
 
 
 
9f27d33
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v2-atcosim
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v2-atcosim

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0552
- Wer: 9.9694

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 12500

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0038        | 8.33  | 1000  | 0.0357          | 2.7829  |
| 0.001         | 16.67 | 2000  | 0.0384          | 2.0004  |
| 0.0015        | 25.0  | 3000  | 0.0373          | 31.7142 |
| 0.0001        | 33.33 | 4000  | 0.0437          | 2.3152  |
| 0.0019        | 41.67 | 5000  | 0.0446          | 7.2375  |
| 0.0           | 50.0  | 6000  | 0.0462          | 2.9033  |
| 0.0           | 58.33 | 7000  | 0.0490          | 4.3295  |
| 0.0           | 66.67 | 8000  | 0.0509          | 5.8668  |
| 0.0           | 75.0  | 9000  | 0.0524          | 7.5014  |
| 0.0           | 83.33 | 10000 | 0.0536          | 8.6405  |
| 0.0           | 91.67 | 11000 | 0.0546          | 9.5018  |
| 0.0           | 100.0 | 12000 | 0.0552          | 9.9694  |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3