File size: 2,049 Bytes
7fbc217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-atcosim
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-atcosim

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0569
- Wer: 1.5420

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1664        | 8.33  | 500  | 0.0441          | 1.4632 |
| 0.0008        | 16.67 | 1000 | 0.0465          | 1.5420 |
| 0.0001        | 25.0  | 1500 | 0.0494          | 1.5142 |
| 0.0           | 33.33 | 2000 | 0.0511          | 1.5049 |
| 0.0           | 41.67 | 2500 | 0.0524          | 1.5003 |
| 0.0           | 50.0  | 3000 | 0.0535          | 1.5142 |
| 0.0           | 58.33 | 3500 | 0.0544          | 1.5188 |
| 0.0           | 66.67 | 4000 | 0.0552          | 1.5188 |
| 0.0           | 75.0  | 4500 | 0.0559          | 1.5327 |
| 0.0           | 83.33 | 5000 | 0.0564          | 1.5558 |
| 0.0           | 91.67 | 5500 | 0.0567          | 1.5512 |
| 0.0           | 100.0 | 6000 | 0.0569          | 1.5420 |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.0