File size: 2,059 Bytes
f7b999c a6698b4 f7b999c a6698b4 f7b999c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-atcosim
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-atcosim
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0711
- Wer: 72.8237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2141 | 8.33 | 500 | 0.0633 | 15.6047 |
| 0.0023 | 16.67 | 1000 | 0.0629 | 29.2091 |
| 0.0007 | 25.0 | 1500 | 0.0646 | 46.2076 |
| 0.0003 | 33.33 | 2000 | 0.0659 | 54.1767 |
| 0.0002 | 41.67 | 2500 | 0.0670 | 58.2284 |
| 0.0002 | 50.0 | 3000 | 0.0679 | 64.0952 |
| 0.0001 | 58.33 | 3500 | 0.0688 | 65.9520 |
| 0.0001 | 66.67 | 4000 | 0.0695 | 68.5081 |
| 0.0001 | 75.0 | 4500 | 0.0701 | 70.5316 |
| 0.0001 | 83.33 | 5000 | 0.0706 | 72.2217 |
| 0.0001 | 91.67 | 5500 | 0.0710 | 72.6801 |
| 0.0001 | 100.0 | 6000 | 0.0711 | 72.8237 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.0
|