jncraton commited on
Commit
ed9c4fe
·
verified ·
1 Parent(s): 363ad5e

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ ---
7
+
8
+
9
+ # SmolLM2
10
+
11
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/oWWfzW4RbWkVIo7f-5444.png)
12
+
13
+ ## Table of Contents
14
+
15
+ 1. [Model Summary](##model-summary)
16
+ 2. [Limitations](##limitations)
17
+ 3. [Training](##training)
18
+ 4. [License](##license)
19
+ 5. [Citation](##citation)
20
+
21
+ ## Model Summary
22
+
23
+ SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
24
+
25
+ SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
26
+
27
+ The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
28
+
29
+ ### How to use
30
+
31
+ ### Transformers
32
+ ```bash
33
+ pip install transformers
34
+ ```
35
+
36
+ ```python
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+ checkpoint = "HuggingFaceTB/SmolLM2-360M-Instruct"
39
+
40
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
41
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
42
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
43
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
44
+
45
+ messages = [{"role": "user", "content": "What is the capital of France."}]
46
+ input_text=tokenizer.apply_chat_template(messages, tokenize=False)
47
+ print(input_text)
48
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
49
+ outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
50
+ print(tokenizer.decode(outputs[0]))
51
+ ```
52
+
53
+ ### Chat in TRL
54
+ You can also use the TRL CLI to chat with the model from the terminal:
55
+ ```bash
56
+ pip install trl
57
+ trl chat --model_name_or_path HuggingFaceTB/SmolLM2-360M-Instruct --device cpu
58
+ ```
59
+
60
+ ## Evaluation
61
+
62
+ In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
63
+
64
+ ## Base Pre-Trained Model
65
+
66
+ | Metrics | SmolLM2-360M | Qwen2.5-0.5B | SmolLM-360M |
67
+ |:-------------------|:------------:|:------------:|:------------:|
68
+ | HellaSwag | **54.5** | 51.2 | 51.8 |
69
+ | ARC (Average) | **53.0** | 45.4 | 50.1 |
70
+ | PIQA | **71.7** | 69.9 | 71.6 |
71
+ | MMLU (cloze) | **35.8** | 33.7 | 34.4 |
72
+ | CommonsenseQA | **38.0** | 31.6 | 35.3 |
73
+ | TriviaQA | **16.9** | 4.3 | 9.1 |
74
+ | Winogrande | 52.5 | **54.1** | 52.8 |
75
+ | OpenBookQA | **37.4** | **37.4** | 37.2 |
76
+ | GSM8K (5-shot) | 3.2 | **33.4** | 1.6 |
77
+
78
+
79
+ ## Instruction Model
80
+
81
+ | Metric | SmolLM2-360M-Instruct | Qwen2.5-0.5B-Instruct | SmolLM-360M-Instruct |
82
+ |:-----------------------------|:---------------------:|:---------------------:|:---------------------:|
83
+ | IFEval (Average prompt/inst) | **41.0** | 31.6 | 19.8 |
84
+ | MT-Bench | 3.66 | **4.16** | 3.37 |
85
+ | HellaSwag | **52.1** | 48.0 | 47.9 |
86
+ | ARC (Average) | **43.7** | 37.3 | 38.8 |
87
+ | PIQA | **70.8** | 67.2 | 69.4 |
88
+ | MMLU (cloze) | **32.8** | 31.7 | 30.6 |
89
+ | BBH (3-shot) | 27.3 | **30.7** | 24.4 |
90
+ | GSM8K (5-shot) | 7.43 | **26.8** | 1.36 |
91
+
92
+
93
+ ## Limitations
94
+
95
+ SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
96
+
97
+ ## Training
98
+
99
+ ### Model
100
+
101
+ - **Architecture:** Transformer decoder
102
+ - **Pretraining tokens:** 4T
103
+ - **Precision:** bfloat16
104
+
105
+ ### Hardware
106
+
107
+ - **GPUs:** 64 H100
108
+
109
+ ### Software
110
+
111
+ - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
112
+
113
+ ## License
114
+
115
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
116
+
117
+ ## Citation
118
+ ```bash
119
+ @misc{allal2024SmolLM2,
120
+ title={SmolLM2 - with great data, comes great performance},
121
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
122
+ year={2024},
123
+ }
124
+ ```
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|im_start|>",
3
+ "eos_token": "<|im_end|>",
4
+ "layer_norm_epsilon": 1e-05,
5
+ "multi_query_attention": true,
6
+ "quantization_bits": null,
7
+ "quantization_group_size": null,
8
+ "quantization_type": 0,
9
+ "unk_token": "<|endoftext|>"
10
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.42.3"
7
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1c4de94102193cdbb2bbedb402585f9c04620c251637b9c2b452231287a0553
3
+ size 363216321
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_start|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<repo_name>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<reponame>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<file_sep>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<filename>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<gh_stars>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_start>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_comment>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<issue_closed>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_start>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_text>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_code>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<jupyter_script>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<empty_output>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ }
140
+ },
141
+ "additional_special_tokens": [
142
+ "<|im_start|>",
143
+ "<|im_end|>"
144
+ ],
145
+ "bos_token": "<|im_start|>",
146
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
147
+ "clean_up_tokenization_spaces": false,
148
+ "eos_token": "<|im_end|>",
149
+ "model_max_length": 2048,
150
+ "pad_token": "<|im_end|>",
151
+ "tokenizer_class": "GPT2Tokenizer",
152
+ "unk_token": "<|endoftext|>",
153
+ "vocab_size": 49152
154
+ }
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff