--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: dc6ee368-689a-4c89-a4f7-be65f332933f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2f52a3fdf4e894a5_train_data.json ds_type: json format: custom path: /workspace/input_data/2f52a3fdf4e894a5_train_data.json type: field_instruction: da field_output: da_bornholm format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: joboffer/dc6ee368-689a-4c89-a4f7-be65f332933f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/2f52a3fdf4e894a5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a138d5e8-d416-4cc9-a5e7-9d34ab87c03b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a138d5e8-d416-4cc9-a5e7-9d34ab87c03b warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ```

# dc6ee368-689a-4c89-a4f7-be65f332933f This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0026 | 1 | 7.3824 | | 19.5983 | 0.0128 | 5 | 7.1207 | | 18.8201 | 0.0256 | 10 | 5.9871 | | 16.0837 | 0.0384 | 15 | 5.5802 | | 16.2765 | 0.0512 | 20 | 5.2516 | | 16.5227 | 0.0639 | 25 | 5.1276 | | 17.2095 | 0.0767 | 30 | 5.1124 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1