--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 base_model: bert-base-uncased model-index: - name: finetuning-sentiment-model-5000-samples results: [] --- # finetuning-sentiment-model-5000-samples This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0701 - Accuracy: 0.758 - F1: 0.7580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 313 | 1.0216 | 0.744 | 0.744 | | 0.2263 | 2.0 | 626 | 1.0701 | 0.758 | 0.7580 | | 0.2263 | 3.0 | 939 | 1.3097 | 0.723 | 0.723 | | 0.1273 | 4.0 | 1252 | 1.4377 | 0.743 | 0.743 | | 0.051 | 5.0 | 1565 | 1.4884 | 0.739 | 0.739 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1