--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: randomcomb_mlm_ep5_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8615744507729862 --- # randomcomb_mlm_ep5_mnli This model is a fine-tuned version of [cuenb](https://huggingface.co/joey234/cuenb) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4416 - Accuracy: 0.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5569 | 0.41 | 5000 | 0.4415 | 0.8273 | | 0.4598 | 0.81 | 10000 | 0.4234 | 0.8425 | | 0.3832 | 1.22 | 15000 | 0.4398 | 0.8475 | | 0.3314 | 1.63 | 20000 | 0.4137 | 0.8494 | | 0.3158 | 2.04 | 25000 | 0.4484 | 0.8527 | | 0.2294 | 2.44 | 30000 | 0.4471 | 0.8552 | | 0.2283 | 2.85 | 35000 | 0.4541 | 0.8557 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.8.0 - Datasets 1.18.3 - Tokenizers 0.12.1