File size: 1,769 Bytes
f542432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model:
- automerger/YamStrangemerges_32-7B
- DiscoResearch/DiscoLM_German_7b_v1
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
library_name: transformers
tags:
- mergekit
- merge

---
# brezn6

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) as a base.

### Models Merged

The following models were included in the merge:
* [automerger/YamStrangemerges_32-7B](https://huggingface.co/automerger/YamStrangemerges_32-7B)
* [DiscoResearch/DiscoLM_German_7b_v1](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1)
* [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser)

### Configuration

The following YAML configuration was used to produce this model:

```yaml

models:
  - model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
    # no parameters necessary for base model
  - model: automerger/YamStrangemerges_32-7B
    parameters:
      density: 0.50
      weight: 0.30
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    parameters:
      density: 0.65
      weight: 0.40
  - model: DiscoResearch/DiscoLM_German_7b_v1
    parameters:
      density: 0.5
      weight: 0.3
merge_method: dare_ties
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

```