--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - precision model-index: - name: clasificador-ser-estar-window-3-bert-base results: [] --- # clasificador-ser-estar-window-3-bert-base This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4416 - F1 Score: 0.8648 - Recall: 0.9578 - Precision: 0.7882 - Roc Auc: 0.8802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Recall | Precision | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:-------:| | No log | 1.0 | 25 | 0.6602 | 0.7465 | 1.0 | 0.5955 | 0.6476 | | No log | 2.0 | 50 | 0.5149 | 0.8342 | 0.9873 | 0.7222 | 0.8281 | | No log | 3.0 | 75 | 0.4397 | 0.8561 | 0.9916 | 0.7532 | 0.8710 | | No log | 4.0 | 100 | 0.4293 | 0.8566 | 0.9325 | 0.7921 | 0.8897 | | No log | 5.0 | 125 | 0.4076 | 0.8566 | 0.9325 | 0.7921 | 0.8882 | | No log | 6.0 | 150 | 0.4416 | 0.8648 | 0.9578 | 0.7882 | 0.8802 | | No log | 7.0 | 175 | 0.4894 | 0.8499 | 0.9198 | 0.7899 | 0.8800 | | No log | 8.0 | 200 | 0.5129 | 0.8577 | 0.9283 | 0.7971 | 0.8907 | | No log | 9.0 | 225 | 0.5474 | 0.8532 | 0.9198 | 0.7956 | 0.8817 | | No log | 10.0 | 250 | 0.6858 | 0.8377 | 0.8819 | 0.7977 | 0.8750 | | No log | 11.0 | 275 | 0.6811 | 0.8465 | 0.9072 | 0.7934 | 0.8740 | | No log | 12.0 | 300 | 0.7265 | 0.8538 | 0.9367 | 0.7845 | 0.8761 | | No log | 13.0 | 325 | 0.7422 | 0.8532 | 0.9198 | 0.7956 | 0.8825 | | No log | 14.0 | 350 | 0.8648 | 0.8409 | 0.9030 | 0.7868 | 0.8743 | | No log | 15.0 | 375 | 0.8326 | 0.8498 | 0.9072 | 0.7993 | 0.8816 | | No log | 16.0 | 400 | 0.8516 | 0.8504 | 0.9114 | 0.7970 | 0.8776 | | No log | 17.0 | 425 | 0.8633 | 0.8487 | 0.9114 | 0.7941 | 0.8862 | | No log | 18.0 | 450 | 0.9064 | 0.8475 | 0.9030 | 0.7985 | 0.8856 | | No log | 19.0 | 475 | 0.9145 | 0.8475 | 0.9030 | 0.7985 | 0.8856 | | 0.2549 | 20.0 | 500 | 0.9146 | 0.8475 | 0.9030 | 0.7985 | 0.8860 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0