--- library_name: transformers license: cc-by-4.0 base_model: bertin-project/bertin-roberta-base-spanish tags: - generated_from_trainer metrics: - recall - precision model-index: - name: clasificador-ser-estar-window-3-bert-base results: [] --- # clasificador-ser-estar-window-3-bert-base This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4157 - F1 Score: 0.8543 - Recall: 0.9030 - Precision: 0.8106 - Roc Auc: 0.8863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Recall | Precision | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:-------:| | No log | 1.0 | 25 | 0.6771 | 0.7465 | 1.0 | 0.5955 | 0.6521 | | No log | 2.0 | 50 | 0.5844 | 0.8035 | 0.9662 | 0.6877 | 0.8265 | | No log | 3.0 | 75 | 0.4922 | 0.7736 | 0.7426 | 0.8073 | 0.8561 | | No log | 4.0 | 100 | 0.4157 | 0.8543 | 0.9030 | 0.8106 | 0.8863 | | No log | 5.0 | 125 | 0.4810 | 0.7824 | 0.7511 | 0.8165 | 0.8607 | | No log | 6.0 | 150 | 0.5954 | 0.8110 | 0.8059 | 0.8162 | 0.8225 | | No log | 7.0 | 175 | 0.4667 | 0.8384 | 0.8650 | 0.8135 | 0.8697 | | No log | 8.0 | 200 | 0.4872 | 0.8370 | 0.8776 | 0.8 | 0.8737 | | No log | 9.0 | 225 | 0.6294 | 0.8488 | 0.9241 | 0.7849 | 0.8860 | | No log | 10.0 | 250 | 0.5427 | 0.8167 | 0.8270 | 0.8066 | 0.8718 | | No log | 11.0 | 275 | 0.6137 | 0.8511 | 0.9283 | 0.7857 | 0.8900 | | No log | 12.0 | 300 | 0.6227 | 0.8444 | 0.8819 | 0.8101 | 0.8876 | | No log | 13.0 | 325 | 0.7103 | 0.8151 | 0.8186 | 0.8117 | 0.8313 | | No log | 14.0 | 350 | 0.5943 | 0.8433 | 0.9198 | 0.7786 | 0.8752 | | No log | 15.0 | 375 | 0.6720 | 0.8413 | 0.8945 | 0.7940 | 0.8826 | | No log | 16.0 | 400 | 0.7007 | 0.8466 | 0.9198 | 0.7842 | 0.8782 | | No log | 17.0 | 425 | 0.7580 | 0.8454 | 0.9114 | 0.7883 | 0.8816 | | No log | 18.0 | 450 | 0.7789 | 0.8454 | 0.9114 | 0.7883 | 0.8803 | | No log | 19.0 | 475 | 0.7755 | 0.8482 | 0.9198 | 0.7870 | 0.8808 | | 0.2871 | 20.0 | 500 | 0.7752 | 0.8488 | 0.9241 | 0.7849 | 0.8797 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0